Synlett 2022; 33(14): 1383-1390
DOI: 10.1055/a-1809-7768
cluster
Organic Chemistry in Thailand

Brønsted Acidic Ionic Liquid Catalyzed Three-Component Friedel–Crafts Reaction for the Synthesis of Unsymmetrical Triarylmethanes

Suttida Rinkam
a   Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Sangesook, Chonburi 20131, Thailand
,
Warapong Senapak
a   Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Sangesook, Chonburi 20131, Thailand
,
Sarayut Watchasit
c   Nuclear Magnetic Resonance Spectroscopic Laboratory, Science Innovation Facility, Faculty of Science, Burapha University, Chonburi 20131, Thailand
,
Rungnapha Saeeng
a   Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Sangesook, Chonburi 20131, Thailand
b   The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand
,
a   Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Sangesook, Chonburi 20131, Thailand
b   The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand
› Author Affiliations
This work was financially supported by a Research Grant from Burapha University through the National Research Council of Thailand (Grant no. 162/2561), the Office of National Higher Education Science Research and Innovation Policy Council (NXPO) (Grant no. BO5F630030), the Center of Excellence for Innovation in Chemistry (PERCH-CIC) and the Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Products for Drug Discovery (RSND), Burapha University. Special thanks to Dr. Ron Beckett, Faculty of Science, Burapha University for his comments and proofreading the English manuscript.


Abstract

A convenient and practical method for the synthesis of unsymmetrical triarylmethanes was demonstrated through a one-pot three-component double Friedel–Crafts reaction of various aliphatic, aromatic, or heteroaromatic aldehydes with N,N-dialkylanilines and indoles by using a Brønsted acidic ionic liquid as the catalyst. This method was successfully applied under metal- and solvent-free conditions at 80 °C, affording the corresponding unsymmetrical triarylmethane products in moderate to high yields from a broad range of substrates. In addition, the mechanism of this reaction was studied by quantitative NMR analysis.

Supporting Information



Publication History

Received: 14 February 2022

Accepted after revision: 28 March 2022

Accepted Manuscript online:
28 March 2022

Article published online:
15 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Palchaudhuri R, Nesterenko V, Hergenrother PJ. J. Am. Chem. Soc. 2008; 130: 10274
    • 1b Shagufta Shagufta, Srivastava AK, Sharma R, Mishra R, Balapure AK, Murthy PS. R, Panda G. Bioorg. Med. Chem. 2006; 14: 1497
    • 1c Natarajan A, Fan Y.-H, Chen H, Guo Y, Iyasere J, Harbinski F, Christ WJ, Aktas H, Halperin JA. J. Med. Chem. 2004; 47: 1882
    • 1d Finer J, Chabala J, Evan L. WO 2002056880, 2002
    • 1e Schnick RA. Prog. Fish-Cult. 1988; 50: 190
    • 1f Küçükkılınç TT, Ozer I. Chem.-Biol. Interact. 2008; 175: 309
    • 1g Lézé M.-P, Le Borgne M, Marchand P, Loquet D, Kogler M, Le Baut G, Palusczak A, Hartmann RW. J. Enzym. Inhib. Med. Chem. 2004; 19: 549
    • 1h Singh P, Manna SK, Jana AK, Saha T, Mishra P, Bera S, Parai MK, Kumar M SL, Mondal S, Trivedi P, Chaturvedi V, Singh S, Sinha S, Panda G. Eur. J. Med. Chem. 2015; 95: 357
    • 2a Gurr E. Synthetic Dyes in Biology, Medicine and Chemistry. Academic; New York: 1971
    • 2b Muthyala R, Katritzky AR, Lan X. Dyes Pigm. 1994; 25: 303
    • 2c Irie M. J. Am. Chem. Soc. 1983; 105: 2078
    • 2d Fischer D, Caseri WR, Hähner G. J. Colloid Interface Sci. 1998; 198: 337
    • 2e Dong C.-p, Kodama S, Uematsu A, Nomoto A, Ueshima M, Ogawa A. J. Org. Chem. 2017; 82: 12530
    • 3a Duxbury DF. Chem. Rev. 1993; 93: 381
    • 3b Chen X, Pradhan T, Wang F, Kim JS, Yoon J. Chem. Rev. 2012; 112: 1910
    • 3c Beija M, Afonso CA. M, Martinho JM. G. Chem. Soc. Rev. 2009; 38: 2410
    • 3d Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T. J. Am. Chem. Soc. 2005; 127: 4888
    • 3e Bhasikuttan AC, Mohanty J, Nau WM, Pal H. Angew. Chem. 2007; 119: 4198
    • 3f Abe H, Wang J, Furukawa K, Oki K, Uda M, Tsuneda S, Ito Y. Bioconjugate Chem. 2008; 19: 1219
    • 4a Panda G, Parai MK, Das SK, Shagufta Shagufta, Sinha M, Chaturvedi V, Srivastava AK, Manju YS, Gaikwad AN, Sinha S. Eur. J. Med. Chem. 2007; 42: 410
    • 4b Reddy BV. S, Reddy MR, Madan C, Kumar KP. Rao M. S. Bioorg. Med. Chem. Lett. 2010; 20: 7507
    • 4c Rao VK, Chhikara B, Shirazi AN, Tiwari R, Parang K, Kumar A. Bioorg. Med. Chem. Lett. 2011; 21: 3511
    • 4d Contractor R, Samudio IJ, Estrov Z, Harris D, McCubrey JA, Safe SH, Andreeff M, Konopleva M. Cancer Res. 2005; 65: 2890
    • 4e Deng J, Sanchez T, Neamati N, Briggs JM. J. Med. Chem. 2006; 49: 1684
    • 5a Bindal RD, Golab JT, Katzenellenbogen JA. J. Am. Chem. Soc. 1990; 112: 7861
    • 5b Bai L, Masukawa N, Yamaki M, Takagi S. Phytochemistry 1998; 47: 1637
    • 5c Cutignano A, Bifulco G, Bruno I, Casapullo A, Gomez-Paloma L, Riccio R. Tetrahedron 2000; 56: 3743
    • 5d Bifulco G, Bruno I, Riccio R, Lavayre J, Bourdy G. J. Nat. Prod. 1995; 58: 1254
    • 6a Deb ML, Deka BD, Rahman I, Baruah PK. Tetrahedron Lett. 2018; 59: 4430
    • 6b Reddy DN. K, Chandrasekhar KB, Ganesh YS. S, Gorantla SS, Ramanjaneyulu S, Kumar KS, Pal M. Synth. Commun. 2015; 45: 513
    • 6c Kothandapani J, Ganesan A, Vairaprakash P, Ganesan SS. Tetrahedron Lett. 2015; 56: 2238
    • 6d Hekmatshoar R, Mousavizadeh F, Rahnamafar R. J. Chem. Sci. (Amritsar, India) 2013; 125: 1009
    • 6e Ganesan SS, Ganesan A. Tetrahedron Lett. 2014; 55: 694
    • 6f Kothandapani J, Ganesan A, Ganesan SS. Tetrahedron Lett. 2015; 56: 5568
    • 6g Najafi E, Behbahani FK. Russ. J. Org. Chem. 2017; 53: 454
    • 6h Zhang X, Zhang X, Li N, Xu X, Qiu R, Yin S. Tetrahedron Lett. 2014; 55: 120
    • 6i Prakash GK. S, Panja C, Shakhmin A, Shah E, Mathew T, Olah G. J. Org. Chem. 2009; 74: 8659
    • 6j Liu J, He T, Wang L. Tetrahedron 2011; 67: 3420
    • 6k Basbero M, Cadamuro S, Dughera S, Magistris C, Venturello P. Org. Biomol. Chem. 2011; 9: 8393
    • 6l Jaratjaroonphong J, Krajangsri S, Reutrakul V. Tetrahedron Lett. 2012; 53: 2476
    • 7a Tong J, Yang C, Xu D.-z. Synthesis 2016; 48: 3559
    • 7b Wang A, Zheng X, Zhao Z, Li C, Cui Y, Zheng X, Yin J, Yang G. Appl. Catal., A 2014; 482: 198
    • 7c Khaligh NG, Mihankhah T, Johan MR, Ching JJ. J. Mol. Liq. 2018; 259: 260
    • 7d Mukhopadhyay C, Datta A, Tapaswi PK. Synth. Commun. 2012; 42: 2453
    • 7e Rajesh UC, Kholiya R, Thakur A, Rawat DS. Tetrahedron Lett. 2015; 56: 1790
    • 7f Garkoti C, Shabir J, Gupta P, Sharma M, Mozumdar S. New J. Chem. 2017; 41: 15545
    • 7g Yeung K.-S, Farkas ME, Qiu Z, Yang Z. Tetrahedron Lett. 2002; 43: 5793
    • 7h Amarasekara AS. Chem. Rev. 2016; 116: 6133
    • 7i Zare A, Abi F, Moosavi-Zare AR, Beyzavi MH, Zolfigol MA. J. Mol. Liq. 2013; 178: 113
    • 7j He L, Qin S, Chang T, Sun Y, Gao X. Catal. Sci. Technol. 2013; 3: 1102
    • 7k Chen Z, Zhu Q, Su W. Tetrahedron Lett. 2011; 52: 2601
    • 7l Dong F, Zhenghao F, Zuliang L. Catal. Commun. 2009; 10: 1267
    • 7m Liang X, Qi C. Catal. Commun. 2011; 12: 808
    • 7n Dong F, Luo J, Zhou X.-L, Liu Z.-L. Catal. Lett. 2007; 116: 76
    • 7o Han F, Yang L, Li Z, Xia C. Org. Biomol. Chem. 2012; 10: 346
    • 7p Qiao K, Hagiwara H, Yokoyama C. J. Mol. Catal. A: Chem. 2006; 246: 65
  • 8 Ponpao N, Senapak W, Saeeng R, Jaratjaroonphong J, Sirion U. RSC Adv. 2021; 11: 22692
    • 9a Senapak W, Saeeng R, Jaratjaroonphong J, Kasemsuk T, Sirion U. Org. Biomol. Chem. 2016; 14: 1302
    • 9b Cole AC, Jensen JL, Ntai I, Tran KL. T, Weaver KJ, Forbes DC, Davis JH. J. Am. Chem. Soc. 2002; 124: 5962
  • 10 {4-[1H-Indol-3-yl(4-nitrophenyl)methyl]phenyl}dimethylamine (4a), 3,3′-[(4-nitrophenyl)methylene]bis-1H-indole (5a), and 4,4′-[(4-Nitrophenyl)methylene]bis(N,N-dimethylaniline) (6a): Typical Procedure A mixture of [bsmim][NTf2] (10 mol%), 4-nitrobenzaldehyde (1a; 1.0 mmol), N,N-dimethylaniline (2a; 2.0 mmol), and indole (3a; 1.0 mmol) was stirred at 80 °C for 6.0 h.When the reaction was complete, the mixture was cooled to r.t. and the reaction was quenched with sat. aq NaHCO3. The mixture was extracted with EtOAc (3×10 mL) and the combined organic layer was dried (Na2SO4) and concentrated in a rotary evaporator. The crude product was purified by column chromatography (silica gel, 20% EtOAc–hexane) to give 4a, 5a, and 6a. 4a Yellow oil; yield: 299 mg (81%); Rf = 0.25 (20% EtOAc–hexane). 1H NMR (400 MHz, CDCl3): δ = 8.13 (d, J = 8.8 Hz, 2 H), 8.07 (br s, 1 H), 7.40 (d, J = 8.8 Hz, 2 H), 7.37 (d, J = 8.0 Hz, 1 H), 7.23–7.17 (m, 2 H), 7.08 (d, J = 8.8 Hz, 2 H), 7.02 (td, J = 7.2, 0.8 Hz, 1 H), 6.71 (d, J = 8.8 Hz, 2 H), 6.59 (d, J = 1.6 Hz, 1 H), 5.68 (s, 1 H), 2.95 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 152.56, 149.36, 146.29, 136.71, 130.23, 129.64, 129.45, 126.61, 124.01, 123.47, 122.26, 119.59, 119.53, 118.98, 112.60, 111.18, 47.76, 40.55. 5a Yellow solid; yield: 30 mg (8%); mp 230–232 °C; Rf = 0.11 (20% EtOAc–hexane). 1H NMR (400 MHz, CDCl3): δ = 8.14 (d, J = 8.8 Hz, 2 H), 8.03 (br s, 2 H), 7.51 (d, J = 8.8 Hz, 2 H), 7.39 (d, J = 8.0 Hz, 2 H), 7.34 (d, J = 8.0 Hz, 2 H), 7.20 (td, J = 7.4, 1.2 Hz, 2 H), 7.03 (td, J = 7.6, 1.2 Hz, 2 H), 6.69 (dd, J = 2.4, 1.6 Hz, 2 H), 5.99 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 152.06, 146.39, 136.71, 129.46, 126.58, 123.74, 123.47, 122.01, 119.38, 119.28, 117.78, 111.27, 40.16. 6a Yellow solid; yield: 38 mg (10%); mp 172–174 °C; Rf = 0.47 (20% EtOAc–hexane). 1H NMR (400 MHz, CDCl3): δ = 8.11 (d, J = 8.8 Hz, 2 H), 7.29 (d, J = 8.4 Hz, 2 H), 6.95 (d, J = 8.4 Hz, 4 H), 6.67 (d, J = 8.8 Hz, 4 H), 5.45 (s, 1 H), 2.93 (s, 12 H). 13C NMR (100 MHz, CDCl3): δ = 153.46, 149.23, 146.15, 130.91, 130.05, 129.81, 123.33, 112.52, 54.89, 40.55.
  • 11 Guzmán-Lucero D, Guzmán J, Likhatchev D, Martínez-Palou R. Tetrahedron Lett. 2005; 46: 1119