Subscribe to RSS
DOI: 10.1055/a-1920-3041
A Three-Component Approach to (Hetero)arenes with Two N-Containing Heterocycle Motifs
We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 21476078), Science and Technology Commission of Shanghai Municipality (No. 12431900902) and the Key Research and Development Project of Shandong Province (No. 2017YYSP027).

Abstract
A one-pot, three-component reaction involving SNAr-decarboxylative redox isomerization starting from an electron-withdrawing group bearing fluorobenzaldehyde or fluorothiophenecarbaldehyde (electron-pair diacceptor), secondary amine, and trans-4-hydroxy-l-proline or indoline-2-carboxylic acid (electron-pair donor) has been developed to give N-[(pyrrolylmethyl)-substituted (het)aryl]- and N-[(indolylmethyl)-substituted (het)aryl]pyrrolidines, -piperidines, -morpholines, and -azocanes. The highlights of this protocol are its great convenience in the simultaneous construction of a C(sp2)–N bond and a C(sp3)–N bond with simple operation; the reaction can be performed on a gram scale. This efficient one-pot multicomponent reaction has potential as a novel method for drug synthesis, especially involving polycyclic compounds.
Key words
three-component reaction - one-pot reaction - SNAr-decarboxylative redox isomerization - polycyclic compounds - N-alkyl pyrroles - N-alkyl indolesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1920-3041.
- Supporting Information
Publication History
Received: 08 June 2022
Accepted after revision: 08 August 2022
Accepted Manuscript online:
08 August 2022
Article published online:
09 September 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Forte B, Malgesini B, Piutti C, Quartieri F, Scolaro A, Papeo G. Mar. Drugs 2009; 7: 705
- 1b Fan H, Peng J, Hamann MT, Hu J.-F. Chem. Rev. 2008; 108: 264 ; corrigendum: Chem. Rev. 2010, 110, 3850
- 2 Iqbal S, Rasheed H, Awan RJ, Awan RJ, Mukhtar A, Moloney MG. Curr. Org. Chem. 2020; 24: 1196
- 3a Aydogan A, Akar A. Chem. Eur. J. 2012; 18: 1999
- 3b Xin X, Wang D, Li X, Wan B. Angew. Chem. Int. Ed. 2012; 51: 1693
- 3c Huestis MP, Chan L, Stuart DR, Fagnou K. Angew. Chem. Int. Ed. 2011; 50: 1338
- 3d Martinelli F, Palmieri A, Petrini M. Chem. Eur. J. 2011; 17: 7183
- 3e Cao Z, Liu Y, Liu Z, Feng X, Zhuang M, Du H. Org. Lett. 2011; 13: 2164
- 3f Robles-Machín R, López-Pérez A, González-Esguevillas M, Javier A, Carretero C. Chem. Eur. J. 2010; 16: 9864
- 3g Rakshit S, Patureau FW, Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
- 3h Donohoe TJ, Race NJ, Bower JF, Callens CK. A. Org. Lett. 2010; 12: 4094
- 3i Rueping M, Parra A. Org. Lett. 2010; 12: 5281
- 3j Taylor JE, Jones MD, Williams JM. J, Bull SD. Org. Lett. 2010; 12: 5740
- 3k Mou X.-Q, Xu Z.-L, Xu L, Wang S.-H, Zhang B.-H, Zhang D, Wang J, Liu W.-T, Bao W. Org. Lett. 2016; 18: 4032
- 3l Reekie TA, Donckele EJ, Manenti G, Püntener N, Diederich F. Org. Lett. 2016; 18: 2252
- 4a Trost BM, Breder A, O’Keefe BM, Rao M, Franz AW. J. Am. Chem. Soc. 2011; 133: 4766
- 4b Mao H, Wang S, Yu P, Lv H, Xu R, Pan Y. J. Org. Chem. 2011; 76: 1167
- 4c Ahlsten N, Lundberg H, Martín-Matute B. Green Chem. 2010; 12: 1628
- 4d McQuaid KM, Sames DJ. J. Am. Chem. Soc. 2009; 131: 402
- 4e ; corrigendum: J. Am. Chem. Soc. 2010, 132: 12517 Han SB, Kim IS, Han H, Krische MJ. J. Am. Chem. Soc. 2009; 131: 6916
- 4f McQuaid KM, Long JZ, Sames D. Org. Lett. 2009; 11: 2972
- 4g Lastra-Barreira B, Díez J, Crochet P. Green Chem. 2009; 11: 1681
- 4h Cadierno V, Crochet P, Francos J, García-Garrido SE, Gimeno J, Nebra N. Green Chem. 2009; 11: 1992
- 4i Murarka S, Zhang C, Konieczynska MD, Seidel D. Org. Lett. 2009; 11: 129
- 4j Trost BM, Maulide N, Livingston RC. J. Am. Chem. Soc. 2008; 130: 11970
- 4k Trost BM, Maulide N, Livingston RC. J. Am. Chem. Soc. 2008; 130: 16502
- 5a Burns NZ, Baran PS, Hoffmann RW. Angew. Chem. Int. Ed. 2009; 48: 2854
- 5b Pahadi NK, Paley M, Jana R, Waetzig SR, Tunge JA. J. Am. Chem. Soc. 2009; 131: 16626
- 6a Zhao S.-C, Shu X.-Z, Ji K.-G, Zhou A.-X, He T, Liu X.-Y, Liang Y.-M. J. Org. Chem. 2011; 76: 1941
- 6b Tang M, Tong L, Ju L, Zhai W, Hu Y, Yu X. Org. Lett. 2015; 17: 5180
- 7a Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
- 7b Biggs-Houck JE, Younai A, Shaw JT. Curr. Opin. Chem. Biol. 2010; 14: 371
- 7c Kalinski C, Umkehrer M, Weber L, Kolb J, Burdack C, Ross G. Mol. Diversity 2010; 14: 513
- 7d Deb I, Coiro DJ, Seidel D. Chem. Commun. 2011; 47: 6473
- 7e Kumar AV, Rao KR. Tetrahedron Lett. 2011; 52: 3237
- 7f Zou ZQ, Deng ZJ, Yu XH, Zhang MM, Zhao SH, Luo T, Yin X, Xu H, Wang W. Sci. China: Chem. 2012; 55: 43
- 7g Tang M, Sun R, Li H, Yu X, Wang W. J. Org. Chem. 2017; 82: 8419
- 8a Rajeshwar Reddy G, Ram Reddy T, Joseph SC, Sateesh Reddy K, Srinivasula Reddy L, Mahesh Kumar P, Rama Krishna G, Malla Reddy C, Rambabu D, Kapavarapu R, Lakshmi C, Meda T, KrishnaPriya K, Parsad KV. L, Pal M. Chem. Commun. 2011; 47: 7779
- 8b Attanasi OA, Favi G, Mantellini F, Moscatelli G, Santeusanio S. J. Org. Chem. 2011; 76: 2860
- 8c Smithen DA, Cameron TS, Thompson A. Org. Lett. 2011; 13: 5864
- 8d Liu X.-t, Hao L, Lin M, Chen L, Zhan Z.-p. Org. Biomol. Chem. 2010; 8: 3064
- 8e Kolontsova AN, Ivantsova MN, Tokareva MI, Mironov MA. Mol. Diversity 2010; 14: 543
- 9 For reviews of redox isomerization, see ref. 5a and: Mahrwald R. Curr. Org. Chem. 2003; 7: 1713
For recent reports on the synthesis of pyrroles, see:
For recent examples, see:
For reports on MCRs, see:
For recent reports on the synthesis of the N-alkyl pyrroles through redox isomerization reactions, see refs. 4b and 6b and:
For reports on the synthesis of the N-alkyl pyrroles through MCRs, see: