Synthesis 2023; 55(05): 719-732
DOI: 10.1055/a-1973-4292
short review

Recent Advances in Chiral Aldehyde Catalysis for Asymmetric Functionalization of Amines

Wei Wen
,
Qi-Xiang Guo
Financial support from the Innovation Research 2035 Pilot Plan of Southwest University (SWU-XDZD22011), the Fundamental Research Funds for the Central Universities (SWU119059), the National Natural Science Foundation of China (NSFC) (22201235, 22071199), and the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0278).


Abstract

Asymmetric functionalization of amines and their derivatives is of great significance in synthetic chemistry and is widely used in the preparation of natural products and pharmaceuticals. In recent years, chiral aldehyde catalysis has emerged as a well-established and recognized tool, providing excellent catalytic activation and stereoselective control in asymmetric reactions of N-unprotected amino acid esters and amino acid ester analogues. In this short review, recent advances in enantioselective aldehyde catalysis, including chiral aldehydes as organocatalysts and co-catalysis combined with transition metals, will be summarized. Lastly, continued development of enantioselective aldehyde catalysis is prospected in the future.

1 Introduction

2 Chiral Aldehyde Catalysis for Tethering Strategy

3 Chiral Aldehyde Catalysis for Imine Activation

4 Chiral Aldehyde/Transition Metal Cooperative Catalysis

5 Conclusion



Publication History

Received: 06 October 2022

Accepted after revision: 07 November 2022

Accepted Manuscript online:
07 November 2022

Article published online:
30 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Chiral Amine Synthesis: Methods, Developments and Applications. Nugent TC. Wiley-VCH; Weinheim: 2010
    • 1b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 2a Non-natural Amino Acids:Methods and Protocols . Pollegioni L, Servi S. Springer; New York: 2012
    • 2b Amino Acids, Peptides and Proteins in Organic Chemistry. Hughes AB. Wiley-VCH; Weinheim: 2009
    • 2c Sourkes TL. Arch. Biochem. Biophys. 1954; 51: 444
    • 2d Farsello D, Giartosio A, Hammes GG. Biochemistry 1966; 5: 197
    • 2e Schirlin D, Gerhart F, Hornsperger JM, Hamon M, Wagner J, Jung MJ. J. Med. Chem. 1988; 31: 30
    • 3a Asymmetric Organocatalysis . In Topics in Current Chemistry, Vol. 291. List B. Springer; Heidelberg: 2009
    • 3b Stereoselective Organocatalysis: Bond Formation Methodologies and Activation Modes. Torres RR. Wiley; Hoboken: 2013
    • 3c Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications. Dalko PI. Wiley-VCH; Weinheim: 2013
  • 4 Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
  • 5 Lelais G, MacMillan DW. C. Aldrichimica Acta 2006; 39: 79
  • 7 Tian S.-K, Chen Y, Hang J, Tang L, McDaid P, Deng L. Acc. Chem. Res. 2004; 37: 621
    • 8a Ryan SJ, Candish L, Lupton DW. Chem. Soc. Rev. 2013; 42: 4906
    • 8b Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 9a Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
    • 9b Ooi T, Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
  • 10 Wang Q, Gu Q, You S.-L. Angew. Chem. Int. Ed. 2019; 58: 6818
    • 12a Wei L, Xu S.-M, Zhu Q, Che C, Wang C.-J. Angew. Chem. Int. Ed. 2017; 56: 12312
    • 12b Huo X, He R, Fu J, Zhang J, Yang G, Zhang W. J. Am. Chem. Soc. 2017; 139: 9819
    • 12c Wei L, Zhu Q, Xu S.-M, Chang X, Wang C.-J. J. Am. Chem. Soc. 2018; 140: 1508
    • 12d Huo X, Zhang J, Fu J, He R, Zhang W. J. Am. Chem. Soc. 2018; 140: 2080
    • 13a Bols M, Skrydstrup T. Chem. Rev. 1995; 95: 1253
    • 13b Fensterbank L, Malacria M, Sieburth SMcN. Synthesis 1997; 813
    • 13c Gauthier DR. Jr, Zandi KS, Shea KJ. Tetrahedron 1998; 54: 2289
    • 13d Sugimura T. Eur. J. Org. Chem. 2004; 1185
    • 13e Bracegirdle S, Anderson EA. Chem. Soc. Rev. 2010; 39: 4114
    • 13f Čusak A. Chem. Eur. J. 2012; 18: 5800
    • 13g Pascal R. Eur. J. Org. Chem. 2003; 1813
    • 13h Tan KL. ACS Catal. 2011; 1: 877
  • 14 Li B.-J, Ei-Nachef C, Beauchemin AM. Chem. Commun. 2017; 53: 13192
    • 15a MacDonald MJ, Schipper DJ, Ng PJ, Moran J, Beauchemin AM. J. Am. Chem. Soc. 2011; 133: 20100
    • 15b MacDonald MJ, Hesp CR, Schipper DJ, Pesant M, Beauchemin AM. Chem. Eur. J. 2013; 19: 2597
    • 15c Guimond N, MacDonald MJ, Lemieux V, Beauchemin AM. J. Am. Chem. Soc. 2012; 134: 16571
  • 16 Kuzuhara H, Watanabe N, Ando M. J. Chem. Soc., Chem. Commun. 1987; 95
  • 17 Koh JT, Delaude L, Breslow R. J. Am. Chem. Soc. 1994; 116: 11234
  • 18 Xu B, Shi L.-L, Zhang Y.-Z, Wu Z.-J, Fu L.-N, Luo C.-Q, Zhang L.-X, Peng Y.-G, Guo Q.-X. Chem. Sci. 2014; 5: 1988
  • 19 Chen J, Gong X, Li J, Li Y, Ma J, Hou C, Zhao G, Yuan W, Zhao B. Science 2018; 360: 1438
  • 20 Wen W, Chen L, Luo M.-J, Zhang Y, Chen Y.-C, Ouyang Q, Guo Q.-X. J. Am. Chem. Soc. 2018; 140: 9774
  • 21 Liao G, Chen H.-M, Xia Y.-N, Li B, Yao Q.-J, Shi B.-F. Angew. Chem. Int. Ed. 2019; 58: 11464
    • 22a Tian J.-M, Wang A.-F, Yang J.-S, Zhao X.-J, Tu Y.-Q, Zhang S.-Y, Chen Z.-M. Angew. Chem. Int. Ed. 2019; 58: 11023
    • 22b Lv X, Xu J, Sun C, Su F, Cai Y, Jin Z, Chi YR. ACS Catal. 2022; 12: 2706
    • 22c Wu Y, Li M, Sun J, Zheng G, Zhang Q. Angew. Chem. Int. Ed. 2022; 61: e202117340
    • 22d Gao Q, Wu C, Deng S, Li L, Liu Z.-S, Hua Y, Ye J, Liu C, Cheng H.-G, Cong H, Jiao Y, Zhou Q. J. Am. Chem. Soc. 2021; 143: 7253
    • 22e Liu Z.-S, Hua Y, Gao Q, Ma Y, Tang H, Shang Y, Cheng H.-G, Zhou Q. Nat. Catal. 2020; 3: 727
    • 22f Zhang J, Xu Q, Fan J, Zhou L, Liu N, Zhu L, Wu J, Xie M. Org. Chem. Front. 2021; 8: 3404
    • 22g Zhao W, Liu J, He X, Jiang H, Lu L, Xiao W. Chin. J. Org. Chem. 2022; 42: 2504
  • 23 Ma J, Zhou Q, Song G, Song Y, Zhao G, Ding K, Zhao B. Angew. Chem. Int. Ed. 2021; 60: 10588
  • 24 Wang W.-Z, Shen H.-R, Liao J, Wen W, Guo Q.-X. Org. Chem. Front. 2022; 9: 1422
  • 25 Cheng A, Zhang L, Zhou Q, Liu T, Cao J, Zhao G, Zhang K, Song G, Zhao B. Angew. Chem. Int. Ed. 2021; 60: 20166
  • 26 Ma J, Gao B, Song G, Zhang R, Wang Q, Ye Z, Chen W.-W, Zhao B. Angew. Chem. Int. Ed. 2022; 61: e202200850
  • 27 Wen W, Luo M.-J, Yuan Y, Liu J.-H, Wu Z.-L, Cai T, Wu Z.-W, Ouyang Q, Guo Q.-X. Nat. Commun. 2020; 11: 5372
  • 28 Ji P, Liu X, Xu J, Zhang X, Guo J, Chen W.-W, Zhao B. Angew. Chem. Int. Ed. 2022; 61: e202206111
    • 29a Chen G.-S, Deng Y.-J, Gong L.-Z, Mi A.-Q, Cui X, Jiang Y.-Z, Choi MC. K, Chan AS. C. Tetrahedron: Asymmetry 2001; 12: 1567
    • 29b Nakoji M, Kanayama T, Okino T, Takemoto Y. Org. Lett. 2001; 3: 3329
  • 31 Chen L, Luo M.-J, Zhu F, Wen W, Guo Q.-X. J. Am. Chem. Soc. 2019; 141: 5159
  • 32 Zhu F, Shen Q.-W, Wang W.-Z, Wu Z.-L, Cai T, Wen W, Guo Q.-X. Org. Lett. 2021; 23: 1463
  • 33 Liu J.-H, Wen W, Liao J, Shen Q.-W, Lin Y, Wu Z.-L, Cai T, Guo Q.-X. Nat. Commun. 2022; 13: 2509 ; and references cited therein
  • 34 Fang P, Chaulagain MR, Aron ZD. Org. Lett. 2012; 14: 2130
  • 35 Zhong X, Zhong Z, Wu Z, Ye Z, Feng Y, Dong S, Liu X, Peng Q, Feng X. Chem. Sci. 2021; 12: 4353