Subscribe to RSS
DOI: 10.1055/a-1983-3890
Samarium-Promoted Homocoupling of Benzaldehydes and In Situ Condensation with Esters Under the Catalysis of Cuprous Iodide
Authors
The project was sponsored by the Shandong Provincial Key Research and Development Program (SPKR&DP) (2019GGXI02036), and the Open Project of Faculty of Chemistry of Qingdao University of Science and Technology (QUSTHX201902).

Abstract
A novel C–H functionalization method was successfully explored by a reductive three molecule coupling of benzaldehydes and esters mediated by samarium and cuprous iodide; thus, the diarylmethanol skeletons were afforded readily via an in situ esterification in one-pot. Substrates including a variety of esters and different benzaldehydes were investigated, and the desired products were readily obtained in moderate to good yields under mild conditions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1983-3890.
- Supporting Information (PDF)
Publication History
Received: 03 September 2022
Accepted after revision: 21 November 2022
Accepted Manuscript online:
21 November 2022
Article published online:
14 December 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a
Rej S,
Ano Y,
Chatani N.
Chem. Rev. 2020; 120: 1788
Reference Ris Wihthout Link
- 1b Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
- 1c Zheng Q, Liu C.-F, Chen J, Rao G.-W. Adv. Synth. Catal. 2020; 362: 1406
- 1d Ali R, Siddiqui R. Adv. Synth. Catal. 2021; 363: 1290
- 1e Meera G, Rohit KR, Treesa GS. S, Anilkumar G. Asian J. Org. Chem. 2020; 9: 144
- 2a Liu B, Zhang Z.-Z, Li X, Shi B.-F. Org. Chem. Front. 2016; 3: 897
- 2b Liao G, Li B, Chen H.-M, Yao Q.-J, Xia Y.-N, Luo J, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 17151
- 2c Rouquet G, Chatani N. Chem. Sci. 2013; 4: 2201
- 2d Liu Y.-Y, Huang B, Cao X.-J, Wan J.-P. ChemCatChem 2016; 8: 1470
- 2e He Q, Yamaguchi T, Chatani N. Org. Lett. 2017; 19: 4544
- 2f
Arockiam PB,
Bruneau C,
Dixneuf PH.
Chem. Rev. 2012; 112: 5879
Reference Ris Wihthout Link
- 2g Jana S, Empel C, Pei C, Nguyen TV, Koenigs RM. Adv. Synth. Catal. 2020; 362: 5721
- 3a Lan J, Xie H, Lu X, Deng Y, Jiang H, Zeng W. Org. Lett. 2017; 19: 4279
- 3b Wang C, Qin J, Shen X, Riedel R, Harms K, Meggers K. Angew. Chem. Int. Ed. 2016; 55: 685
- 3c Li S.-S, Wang C.-Q, Lin H, Zhang X.-M, Dong L. Org. Lett. 2015; 17: 3018
- 4a Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
- 4b Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
- 4c Tang K.-X, Wang C.-M, Gao T.-H, Chen L, Fan L, Sun L.-P. Adv. Synth. Catal. 2019; 361: 26
- 4d Kern N, Plesniak MP, McDouall JJ. W, Procter D. J. Nat. Chem. 2017; 9: 1198
- 4e Wang D.-Y, Guo S.-H, Pan G.-F, Zhu X.-Q, Gao Y.-R, Wang Y.-Q. Org. Lett. 2018; 20: 1794
- 5a Ilies L, Zhou Y, Yang H, Matsubara T, Shang R, Nakamura E. ACS Catal. 2018; 8: 11478
- 5b Zhou Y.-R, Yuan J.-J, Yang Q, Xiao Q, Peng Y.-Y. ChemCatChem 2016; 8: 1
- 5c Du C, Li P.-X, Zhu X.-J, Suo J.-F, Niu J.-L, Song M.-P. Angew. Chem. Int. Ed. 2016; 55: 1
- 6a Wang X, Xie G, Zhao Y, Zheng K, Fang Y, Wang X. Tetrahedron Lett. 2021; 72: 153069
- 6b Szostak M, Spain M, Procter DJ. Chem. Soc. Rev. 2013; 42: 9155
- 6c Edelmann FT. Coord. Chem. Rev. 2018; 370: 129
- 6d Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
- 6e Nicolaou KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140
- 6f Bousrez G, Jaroschik F. Eur. J. Org. Chem. 2022; 1.
- 7a Banik BK. Eur. J. Org. Chem. 2002; 2431
- 7b Anthore-Dalion L, Benischke AD, Wei B, Berionni G, Knochel P. Angew. Chem. Int. Ed. 2019; 58: 4046
- 7c Ye Y, Zhou Q, Zheng R, Jiang H, Chen R, Zhang Y. Appl. Organomet. Chem. 2011; 25: 331
- 8a Liu Y, Xiao S.-H, Qi Y, Du F. Chem. Asian J. 2017; 12: 673
- 8b Xiao S, Liu C, Song B, Wang L, Qi Y, Liu Y. Chem. Commun. 2021; 57: 6169
- 8c Song B, Zhang D.-M, Xiao S.-H, Liu C, Chen H.-P, Qi Y, Liu Y.-J. J. Org. Chem. 2021; 86: 9854
- 8d Liu Y.-J, Zhang D.-M, Xiao S.-H, Qi Y, Liu S.-F. Asian J. Org. Chem. 2019; 8: 858
- 8e Liu Y.-J, Tian G, Li J.-J, Qi Y, Wen Y, Du F. J. Org. Chem. 2017; 82: 5932
- 9a Shah S, Das BG, Singh VK. Tetrahedron 2021; 93: 132238
- 9b Gómez JE, Cristòfol À, Kleij AW. Angew. Chem. Int. Ed. 2019; 58: 3903
- 9c Tekale S.-U, Jadhav VB, Pagore VP, Kauthale SS, Gaikwad DD, Pawar RP. Mini-Rev. Org. Chem. 2013; 10: 281
- 10a Wen X, Di Paola F, Chopra N. J. Addict. Med. 2019; 13: 412
- 10b Kirkpatrick D, Momot M, Anthony C. Sep. Sci. Plus 2020; 3: 267
- 10c Zhu N, Su M, Wan W.-M, Li Y, Bao H. Org. Lett. 2020; 22: 991
- 10d Misawa T, Aoyama H, Furuyama T, Dodo K, Sagawa M, Miyachi H, Kizaki M, Hashimoto Y. Chem. Pharm. Bull. 2008; 56: 1490
- 10e Kawabata K, Tanaka T, Yamamoto T, Ushida J, Hara A, Murakami A, Koshimizu K, Ohigashi H, Stoner GD, Mori H. Jpn. J. Cancer. Res. 2000; 91: 148
- 10f Orita S, Hirose M, Takahashi S, Imaida K, Ito N, Shudo K, Ohigashi H, Murakami A, Shirai T. Toxicol. Pathol. 2004; 32: 250
- 10g Naoaki T, Takahisa K, Shogo Y, Takashi Y, Toshihiro T, Yasuyoshi U, Hans P, Robert D, Haleh A, Ole LL. PCT Int. Appl WO 2004014821, 2004
- 10h Rene AP, Gaston VM, Kumar SA, Anne ML. PCT Int. Appl WO 2002024683, 2002
- 10i Wright SW, Harris RR, Collins RJ, Corbett RL, Green AM, Wadman EA, Batt DG. J. Med. Chem. 1992; 35: 3148
- 10j Cheng Q, Chen Q, Xu J.-H, Yu H.-L. Mol. Catal. 2018; 455: 224
- 11a Choquette KA, Sadasivam DV, Flowers RA. II. J. Am. Chem. Soc. 2011; 133: 10655
- 11b Kimberly AC, Dhandapani VS, Robert AF. II. J. Am. Chem. Soc. 2010; 132: 17396
- 11c Sadasivam DV, Antharjanam PK. S, Prasad E, Flowers RA. II. J. Am. Chem. Soc. 2008; 130: 7228
- 11d Shotwell JB, Sealy JM, Flowers RA. II. J. Org. Chem. 1999; 64: 5251
- 11e Farran H, Hoz S. Org. Lett. 2008; 10: 865
- 11f Halder S, Hoz S. J. Org. Chem. 2014; 79: 2682
- 12 CCDC 2061732 (4l) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 13a Maity S, Flowers RA. J. Am. Chem. Soc. 2019; 141: 3207
- 13b Kern N, Plesniak MP, McDouall JJ. W, Procter DJ. Nat. Chem. 2017; 9: 1198
- 13c Just-Baringo X, Procter DJ. Acc. Chem. Res. 2015; 48: 1263
- 13d Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
- 14a Liu Y.-H, Yan Y.-D, Zhang M.-L, Ji D.-B, Li P, Yin T.-Q, Wang P, Xue Y, Jing X.-Y, Han W, Qiu M, Hu D. J. Alloys Compd. 2019; 772: 978
- 14b Totleben MJ, Curran DP, Wipf P. J. Org. Chem. 1992; 57: 1740
- 14c Curran D, Totleben MJ. J. Am. Chem. Soc. 1992; 114: 6050
- 14d Wipf P, Venkatraman S. J. Org. Chem. 1993; 58: 3455
- 15a Shiue J.-S, Lin M.-H, Fang J.-M. J. Org. Chem. 1997; 62: 4643
- 15b Shiue J.-S, Lin C.-C, Fang J.-M. Tetrahedron Lett. 1993; 34: 335