Synlett 2023; 34(14): 1689-1693
DOI: 10.1055/a-1988-1984
letter
Published as part of the Special Section 13th EuCheMS Organic Division Young Investigator Workshop

Mesyl and Triflyl Functionalized N-Heterocyclic Carbenes as Acceptor Fragments in Luminescent Carbene-Metal-Amide Complexes

Armands Ruduss
a   Institute of Applied Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 3/7 Paula Valdena Str., Riga 1048, Latvia
,
Zanis Sisojevs
a   Institute of Applied Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 3/7 Paula Valdena Str., Riga 1048, Latvia
,
Sergey Belyakov
b   Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., Riga 1006, Latvia
,
a   Institute of Applied Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 3/7 Paula Valdena Str., Riga 1048, Latvia
› Author Affiliations
This research was funded by the Latvian Council of Science (Latvijas Zinātnes Padome; lzp-2019/1-0231).


Abstract

Synthetic procedures providing access to mesyl and triflyl functionalized derivatives of 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene (SIPr) have been provided in detail. New luminescent carbene-metal-amide (CMA) Cu(I) complexes based on acceptor group functionalized SIPr have been prepared. The effect of the LUMO energy in the sulfonyl functionalized N-heterocyclic carbene (NHC) series on the emissive properties of the CMAs has been investigated.

Supporting Information



Publication History

Received: 02 November 2022

Accepted after revision: 27 November 2022

Accepted Manuscript online:
27 November 2022

Article published online:
19 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Adachi C. Jpn. J. Appl. Phys. 2014; 53: 060101
    • 1b Im Y, Kim M, Cho YJ, Seo J.-A, Yook KS, Lee JY. Chem. Mater. 2017; 29: 1946
    • 1c Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP. Chem. Soc. Rev. 2017; 46: 915
    • 1d Liu Y, Li C, Ren Z, Yan S, Bryce MR. Nat. Rev. Mater. 2018; 3: 18020
    • 1e Huang T, Jiang W, Duan L. J. Mater. Chem. C 2018; 6: 5577
  • 2 Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C. Appl. Phys. Lett. 2011; 98: 083302
    • 3a Di D, Romanov AS, Yang L, Richter JM, Rivett JP. H, Jones S, Thomas TH, Abdi Jalebi M, Friend RH, Linnolahti M, Bochmann M, Credgington D. Science 2017; 356: 159
    • 3b Hamze R, Peltier JL, Sylvinson D, Jung M, Cardenas J, Haiges R, Soleilhavoup M, Jazzar R, Djurovich PI, Bertrand G, Thompson ME. Science 2019; 363: 601
  • 4 Hamze R, Shi S, Kapper SC, Ravinson DS. M, Estergreen L, Jung MC, Tadle AC, Haiges R, Djurovich PI, Peltier JL, Jazzar R, Bertrand G, Bradforth SE, Thompson ME. J. Am. Chem. Soc. 2019; 141: 8616
    • 5a Lüdtke N, Föller J, Marian CM. Phys. Chem. Chem. Phys. 2020; 22: 23530
    • 5b Chotard F, Sivchik V, Linnolahti M, Bochmann M, Romanov AS. Chem. Mater. 2020; 32: 6114
    • 5c Hamze R, Idris M, Ravinson DS. M, Jung M. c, Haiges R, Djurovich PI, Thompson ME. Front. Chem. 2020; 8: 401 DOI: 10.3389/fchem.2020.00401.
    • 6a Park IS, Lee SY, Adachi C, Yasuda T. Adv. Funct. Mater. 2016; 26: 1813
    • 6b Chen T, Lu C.-H, Huang C.-W, Zeng X, Gao J, Chen Z, Xiang Y, Zeng W, Huang Z, Gong S, Wu C.-C, Yang C. J. Mater. Chem. C 2019; 7: 9087
    • 6c Liu H, Li J, Li G, Zhang B, Zhan Q, Liu Z, Zhou C, Li K, Wang Z, Yang C. Dyes Pigm. 2020; 180: 108521
    • 6d Yang D, Kim J.-M, Huh J.-S, Kim J.-J, Hong J.-I. Org. Electron. 2021; 95: 106187
    • 6e Duda E, Hall D, Bagnich S, Carpenter-Warren CL, Saxena R, Wong MY, Cordes DB, Slawin AM. Z, Beljonne D, Olivier Y, Zysman-Colman E, Köhler A. J. Phys. Chem. B 2022; 126: 552
    • 7a Wong MY, Krotkus S, Copley G, Li W, Murawski C, Hall D, Hedley GJ, Jaricot M, Cordes DB, Slawin AM. Z, Olivier Y, Beljonne D, Muccioli L, Moral M, Sancho-Garcia J.-C, Gather MC, Samuel ID. W, Zysman-Colman E. ACS Appl. Mater. Interfaces 2018; 10: 33360
    • 7b Hundemer F, Graf von Reventlow L, Leonhardt C, Polamo M, Nieger M, Seifermann SM, Colsmann A, Bräse S. ChemistryOpen 2019; 8: 1413
    • 7c Mubarok H, Lee W, Lee T, Jung J, Yoo S, Lee MH. Front. Chem. 2020; 8: 538 DOI: 10.3389/fchem.2020.00538.
    • 8a Shi S, Jung MC, Coburn C, Tadle A, Sylvinson DM. R, Djurovich PI, Forrest SR, Thompson ME. J. Am. Chem. Soc. 2019; 141: 3576
    • 8b Romanov AS, Jones ST. E, Gu Q, Conaghan PJ, Drummond BH, Feng J, Chotard F, Buizza L, Foley M, Linnolahti M, Credgington D, Bochmann M. Chem. Sci. 2020; 11: 435
    • 8c Conaghan PJ, Matthews CS. B, Chotard F, Jones ST. E, Greenham NC, Bochmann M, Credgington D, Romanov AS. Nat. Commun. 2020; 11: 1758
    • 8d Ying A, Huang YH, Lu CH, Chen Z, Lee WK, Zeng X, Chen T, Cao X, Wu CC, Gong S, Yang C. ACS Appl. Mater. Interfaces 2021; 13: 13478
    • 8e Reponen AM, Chotard F, Lempelto A, Shekhovtsev V, Credgington D, Bochmann M, Linnolahti M, Greenham NC, Romanov AS. Adv. Opt. Mater. 2022; 10: 2200312
    • 8f Gu Q, Chotard F, Eng J, Reponen A.-PM, Vitorica-Yrezabal IJ, Woodward AW, Penfold TJ, Credgington D, Bochmann M, Romanov AS. Chem. Mater. 2022; 34: 7526
    • 9a Meiries S, Speck K, Cordes DB, Slawin AM. Z, Nolan SP. Organometallics 2013; 32: 330
    • 9b Le Duc G, Meiries S, Nolan SP. Organometallics 2013; 32: 7547
    • 9c Yong X, Thurston R, Ho C.-Y. Synthesis 2019; 51: 2058
    • 10a Ruduss A, Turovska B, Belyakov S, Stucere KA, Vembris A, Traskovskis K. Inorg. Chem. 2022; 61: 2174
    • 10b Ruduss A, Sisojevs Z, Vembris A, Stucere KA, Traskovskis K. Proc. SPIE 2022; 12149: 1214908 DOI: 10.1117/12.2620983.
  • 11 Dorta R, Stevens ED, Scott NM, Costabile C, Cavallo L, Hoff CD, Nolan SP. J. Am. Chem. Soc. 2005; 127: 2485
  • 12 Arduengo AJ, Krafczyk R, Schmutzler R, Craig HA, Goerlich JR, Marshall WJ, Unverzagt M. Tetrahedron 1999; 55: 14523
  • 13 Leuthäußer S, Schwarz D, Plenio H. Chem. Eur. J. 2007; 13: 7195
  • 14 Mete TB, Khopade TM, Bhat RG. Tetrahedron Lett. 2017; 58: 415
  • 15 Billard T, Large S, Langlois BR. Tetrahedron Lett. 1997; 38: 65
  • 16 Compound 18a: A mixture of 1,3-bis(2,6-diisopropyl-4-(methylthio)phenyl)-4,5-dihydro-1H-imidazol-3-ium chloride (16a) (2.00 g, 3.43 mmol) and KHMDS (0.72 g, 3.61 mmol) in anhydrous THF (200 mL) was stirred for 1 h at r.t. Then CuCl (0.34 g, 3.43 mmol) was added and the mixture was stirred for additional 2.5 h at r.t. The formed precipitate containing product was separated by filtration. The solid was collected and purified using a Soxhlet apparatus (24 h, solvent: acetonitrile) to afford the product as a greenish solid. Yield: 1.34 g (60%). 1H NMR (DMSO-d 6, 500 MHz): δ = 7.88 (s, 4 H), 4.16 (s, 4 H), 3.36 (s, 6 H), 3.18 (hept, J = 6.7 Hz, 4 H), 1.38 (d, J = 6.7 Hz, 12 H), 1.31 (d, J = 6.7 Hz, 12 H). 13C NMR data not obtained due to the low solubility of compound 18a.
  • 17 Santoro O, Collado A, Slawin AM. Z, Nolan SP, Cazin CS. J. Chem. Commun. 2013; 49: 10483
  • 18 Compound 18b: A mixture of 1,3-bis(2,6-diisopropyl-4-((trifluoromethyl)sulfonyl)phenyl)-4,5-dihydro-1H-imidazol-3-ium chloride (17b) (2.16 g, 3.13 mmol), CuCl (0.38 g, 3.84 mmol) and K2CO3 (0.70 g, 5.06 mmol) in acetone (200 mL) was stirred and heated at reflux for 24 h. The precipitate containing product was separated by filtration, washed with H2O and dried at r.t. The solid was purified by using a Soxhlet apparatus (48 h, solvent: acetonitrile) to afford the product as a greenish solid. Yield: 1.72 g (73%). 1H NMR (DMSO-d 6, 500 MHz): δ = 8.03 (s, 2 H), 4.25 (s, 4 H), 3.24–3.20 (m, 4 H), 1.38 (d, J = 6.8 Hz, 12 H), 1.31 (d, J = 6.8 Hz, 12 H). 13C NMR data not obtained due to the low solubility of compound 18b. 19F NMR (DMSO-d 6, 471 MHz): δ = –78.26.
  • 19 Compound 19a: To a solution of 9H-carbazole (0.093 g, 0.556 mmol) in anhydrous degassed THF (45 mL), KOtBu (0.063 g, 0.561 mmol) was added and the mixture was stirred at r.t. for 30 min. Then compound 18a (0.300 g, 0.465 mmol) was added and the mixture was stirred for an additional 3 h. Then mixture was filtered via syringe filter into anhydrous degassed hexane (250 mL) to precipitate the product. The obtained mixture was filtered and washed with hexane (50 mL) to obtain the product as an off-white solid. Yield: 0.234 g (65%). 1H NMR (DMSO-d 6, 500 MHz): δ = 8.04 (s, 4 H), 7.76 (d, J = 7.5 Hz, 2 H), 6.83 (t, J = 7.5 Hz, 2 H), 6.73 (t, J = 7.3 Hz, 2 H), 5.83 (d, J = 8.1 Hz, 2 H), 4.36 (s, 4 H), 3.43 (s, 6 H), 3.35 (m, 4 H), 1.42 (d, J = 6.7 Hz, 12 H), 1.27 (d, J = 6.7 Hz, 12 H). 13C NMR (DMSO-d 6, 125.77 MHz): δ = 202.70, 149.15, 148.86, 142.41, 138.90, 123.32, 123.24, 123.03, 118.98, 115.15, 112.99, 53.56, 43.17, 28.59, 24.63, 23.19. A similar method was used for the synthesis of compounds 19b and 20a (see the Supporting Information).
  • 20 CCDC 2214035 (19a) and 2214034 (20a) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures