Synthesis 2023; 55(07): 1042-1052
DOI: 10.1055/a-2000-8183
short review

Earth-Abundant Transition Metal Catalyzed Asymmetric Hydrogenation of Minimally Functionalized Alkenes

Peng Lu
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
,
Zhan Lu
a   Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
b   College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. of China
› Author Affiliations
This work was financially supported by National Key Research and Development Program of China (2021YFF0701600 and 2021YFA1500200), National Natural Science Foundation of China (NSFC) (22271249), the Fundamental Research Funds for the Central Universities (226-2022-00224), China Postdoctoral Science Foundation (2022M712739), and the Center of Chemistry for Frontier Technologies.


Abstract

Transition-metal-catalyzed asymmetric hydrogenation (AH) is a growing field and a fundamental tool for the construction of chiral compounds. The use of earth-abundant transition metals in AH reactions remains generally limited but has received increased attention in recent years due to cost, sustainability, and environmental concerns. Here, we will summarize progress in first row transition metal catalyzed AH of minimally functionalized alkenes, including scope, mechanism, and challenges in this field.

1 Introduction

2 Ti-Catalyzed AH of Minimally Functionalized Alkenes

3 Zr-Catalyzed AH of Minimally Functionalized Alkenes

4 Co-Catalyzed AH of Minimally Functionalized Alkenes

5 Fe-Catalyzed AH of Minimally Functionalized Alkenes

6 Summary and Outlook



Publication History

Received: 17 November 2022

Accepted after revision: 19 December 2022

Accepted Manuscript online:
19 December 2022

Article published online:
18 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Johnson NB, Lennon IC, Moran PH, Ramsden JA. Acc. Chem. Res. 2007; 40: 1291
    • 1b Shultz CS, Krska SW. Acc. Chem. Res. 2007; 40: 1320
    • 1c Etayoa P, Vidal-Ferran A. Chem. Soc. Rev. 2013; 42: 728
  • 2 Knowles WS, Sabacky MJ. Chem. Commun. 1968; 1445
  • 3 Horner L, Siegel H, Büthe H. Angew. Chem., Int. Ed. Engl. 1968; 7: 941
  • 4 Dang TP, Kagan HB. J. Chem. Soc. D. 1971; 481
  • 5 Vineyard BD, Knowles WS, Sabacky MJ, Bachman GL, Weinkauff OJ. J. Am. Chem. Soc. 1977; 99: 5946
    • 7a Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008
    • 7b Knowles WS. Angew. Chem. Int. Ed. 2002; 41: 1998
    • 8a Tang W, Zhang X. Chem. Rev. 2003; 103: 3029
    • 8b Zhao D, Candish L, Paul D, Glorius F. ACS Catal. 2016; 6: 5978
    • 8c Zhang Z, Butt NA, Zhang W. Chem. Rev. 2016; 116: 14769
    • 8d Zhou Y.-G. Acc. Chem. Res. 2007; 40: 1357
    • 8e Zhu S.-F, Zhou Q.-L. Acc. Chem. Res. 2017; 50: 988
    • 8f Charvillat T, Bernardelli P, Daumas M, Pannecoucke X, Ferey V, Besset T. Chem. Soc. Rev. 2021; 50: 8178
    • 9a Crabtree RH, Felkin H, Morris GE. J. Organomet. Chem. 1977; 141: 205
    • 9b Crabtree RH, Gautier A, Giordano G, Khan T. J. Organomet. Chem. 1977; 141: 113
    • 10a Schnider P, Koch G, Prétôt R, Wang G, Bohnen FM, Krüger C, Pfaltz A. Chem. Eur. J. 1997; 3: 887
    • 10b Lightfoot A, Schnider P, Pfaltz A. Angew. Chem. Int. Ed. 1998; 37: 2897
  • 11 Helmchen G, Pfaltz A. Acc. Chem. Res. 2000; 33: 336
    • 12a Roseblade SJ, Pfaltz A. Acc. Chem. Res. 2007; 40: 1402
    • 12b Cui X, Burgess K. Chem. Rev. 2005; 105: 3272
    • 12c Verendel JJ, Pamies O, Diéguez M, Andersson PG. Chem. Rev. 2014; 114: 2130
    • 12d Biosca M, Magre M, Pamies O, Diéguez M. ACS Catal. 2018; 8: 10316
    • 12e Bunlaksananusorn T, Polborn K, Knochel P. Angew. Chem. Int. Ed. 2003; 42: 3941
    • 12f Bell S, Wüstenberg B, Kaiser S, Menges F, Netscher T, Pfaltz A. Science 2006; 311: 642
    • 12g Biosca M, Salomo E, Cruz-Sanchez P, Riera A, Verdaguer X, Pamies O, Diéguez M. Org. Lett. 2019; 21: 807
    • 12h Wassenaar J, Detz RJ, Boer SY, Lutz M, Maarseveen JH, Hiemstra H, Reek JN. H. J. Org. Chem. 2015; 80: 3634
  • 13 Powell MT, Hou D.-R, Perry MC, Cui X, Burgess K. J. Am. Chem. Soc. 2001; 123: 8878
  • 14 Drury WJ, Zimmermann N, Keenan M, Hayashi M, Kaiser S, Goddard R, Pfaltz A. Angew. Chem. Int. Ed. 2004; 43: 70
  • 15 Schumacher A, Bernasconi M, Pfaltz A. Angew. Chem. Int. Ed. 2013; 52: 7422
  • 16 Liu Q.-B, Zhou Y.-G. Tetrahedron Lett. 2007; 48: 2101
    • 17a Källström K, Hedberg C, Brandt P, Bayer A, Andersson PG. J. Am. Chem. Soc. 2004; 126: 14308
    • 17b Hedberg C, Källström K, Brandt P, Hansen LK, Andersson PG. J. Am. Chem. Soc. 2006; 128: 2995
    • 18a Mazuela J, Norrby P.-O, Andersson PG, Pàmies O, Diéguez M. J. Am. Chem. Soc. 2011; 133: 13634
    • 18b Mazuela J, Pàmies O, Diéguez M. ChemCatChem 2013; 5: 2410
  • 19 Busacca CA, Qu B, Grět N, Fandrick KR, Saha AK, Marsini M, Reeves D, Haddad N, Eriksson M, Wu J.-P, Grinberg N, Lee H, Li Z, Lu B, Chen D, Hong Y, Ma S, Senanayake CH. Adv. Synth. Catal. 2013; 355: 1455
    • 20a Chatterjee I, Qu Z.-W, Grimme S, Oestreich M. Angew. Chem. Int. Ed. 2015; 54: 12158
    • 20b Keess S, Oestreich M. Chem. Sci. 2017; 8: 4688
    • 20c Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
    • 21a Pálvölgyi ÁM, Scharinger F, Schnürch M, Bica-Schröder K. Eur. J. Org. Chem. 2021; 5367
    • 21b Noyori R, Hashiguchi S. Acc. Chem. Res. 1997; 30: 97
    • 21c Li Y.-Y, Yu S.-L, Shen W.-Y, Gao J.-X. Acc. Chem. Res. 2015; 48: 2587
    • 21d Zassinovich G, Mestroni G, Gladiali S. Chem. Rev. 1992; 92: 1051
    • 21e Palmer MJ, Wills M. Tetrahedron: Asymmetry 1999; 10: 2045
    • 21f Gladiali S, Alberico E. Chem. Soc. Rev. 2006; 35: 226
    • 21g Yang JW, Fonseca MT. H, List B. Angew. Chem. Int. Ed. 2004; 43: 6660
    • 21h Xu H, Yang P, Chuanprasit P, Hirao H, Zhou J. Angew. Chem. Int. Ed. 2015; 54: 5112
    • 22a Wang Y, Huang Z, Liu G, Huang Z. Acc. Chem. Res. 2022; 55: 2148
    • 22b Wang Z, Ai F, Wang Z, Zhao W, Zhu G, Lin Z, Sun J. J. Am. Chem. Soc. 2015; 137: 383
  • 23 Margarita C, Andersson PG. J. Am. Chem. Soc. 2017; 139: 1346
    • 24a Zhang Z, Butt NA, Zhou M, Liu D, Zhang W. Chin. J. Chem. 2018; 36: 443
    • 24b Wen J, Wang F, Zhang X. Chem. Soc. Rev. 2021; 50: 3211
    • 24c Ai W, Zhong R, Liu X, Liu Q. Chem. Rev. 2019; 119: 2876
    • 24d Le Bailly BA. F, Thomas SP. RSC Adv. 2011; 1: 1435
    • 24e Gieshoff TN, von Wangelin AJ. C=C Hydrogenations with Iron Group Metal Catalysts . In Non-Noble Metal Catalysis: Molecular Approaches and Reactions . Gebbink RJ. M. K, Moret M.-E. Wiley-VCH; Weinheim: 2018: 97
    • 24f Teichert JF. Homogeneous Hydrogenation with Non-Precious Catalysts. Wiley-VCH; Weinheim: 2019
    • 25a Marks TJ. Acc. Chem. Res. 1992; 25: 57
    • 25b Kesti MR, Coates GW, Waymouth RM. J. Am. Chem. Soc. 1992; 114: 9679
    • 25c Pino P, Cioni P, Wei J. J. Am. Chem. Soc. 1987; 109: 6189
  • 26 Cesarotti E, Ugo R, Kagan HB. Angew. Chem., Int. Ed. Engl. 1979; 18: 779
  • 27 Halterman RL, Vollhardt KP. C, Welker ME, Blaeser D, Boese R. J. Am. Chem. Soc. 1987; 109: 8105
  • 28 Wild FR. W. P, Zsolnai L, Huttner G, Brintzinger HH. J. Organomet. Chem. 1982; 232: 233
  • 29 Broene RD, Buchwald SL. J. Am. Chem. Soc. 1993; 115: 12569
  • 30 Waymouth R, Pino P. J. Am. Chem. Soc. 1990; 112: 4911
  • 31 Troutman MV, Appella DH, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 4916
  • 32 It’s Elemental: The Periodic Table of Elements, Jefferson Lab Resources, Thomas Jefferson National Accelerator Facility - Office of Science Education (accessed January 2, 2023): https://education.jlab.org/itselemental/
  • 33 Ohgo Y, Takeuchi S, Natori Y, Yoshimura J. Bull. Chem. Soc. Jpn. 1981; 54: 2124
  • 34 Yoshinaga K, Kito T, Oka H, Sakaki S, Ohkubo K. J. Catal. 1984; 87: 517
  • 35 Leutenegger U, Madin A, Pfaltz A. Angew. Chem., Int. Ed. Engl. 1989; 28: 60
  • 36 Corma A, Iglesias M, del Pino C, Sanchez F. J. Organomet. Chem. 1992; 431: 233
    • 37a Friedfeld MR, Shevlin M, Hoyt JM, Krska SW, Tudge MT, Chirik PJ. Science 2013; 342: 1076
    • 37b Friedfeld MR, Zhong H, Ruck RT, Shevlin M, Chirik PJ. Science 2018; 360: 888
    • 37c Du X, Xiao Y, Yang Y, Duan Y.-N, Li F, Hu Q, Chung LW, Chen G.-Q, Zhang X. Angew. Chem. Int. Ed. 2021; 60: 11384
    • 37d Du X, Xiao Y, Huang J.-M, Zhang Y, Duan Y.-N, Wang H, Shi C, Chen G.-Q, Zhang X. Nat. Commun. 2020; 11: 3239
  • 38 Monfette S, Turner ZR, Semproni SP, Chirik PJ. J. Am. Chem. Soc. 2012; 134: 4561
  • 39 Friedfeld MR, Shevlin M, Margulieux GW, Campeau L.-C, Chirik PJ. J. Am. Chem. Soc. 2016; 138: 3314
  • 40 Hopmann KH. Organometallics 2013; 32: 6388
  • 41 Chen J, Chen C, Ji C, Lu Z. Org. Lett. 2016; 18: 1594
  • 42 Mazuela J, Pàmies O, Diéguez M. Eur. J. Inorg. Chem. 2013; 2139
  • 43 Massaro L, Zheng J, Margarita C, Andersson PG. Chem. Soc. Rev. 2020; 49: 2504
  • 44 Lu P, Wang H, Mao Y, Hong X, Lu Z. J. Am. Chem. Soc. 2022; 144: 17359
  • 45 The DFT calculations of mechanism is being prepared for submission.
  • 46 Gopalaiah K. Chem. Rev. 2013; 113: 3248
  • 47 Frankel EN, Emken EA, Peters HM, Davison VL, Butterfield RO. J. Org. Chem. 1964; 29: 3292
    • 48a Bart SC, Lobkovsky E, Chirik PJ. J. Am. Chem. Soc. 2004; 126: 13794
    • 48b Chirik PJ. Acc. Chem. Res. 2015; 48: 1687
    • 48c Guo N, Hu M.-Y, Feng Y, Zhu S.-F. Org. Chem. Front. 2015; 2: 692
    • 48d Frank DJ, Guiet L, Käslin A, Murphy E, Thomas SP. RSC Adv. 2013; 3: 25698
    • 48e Daida EJ, Peters JC. Inorg. Chem. 2004; 43: 7474
    • 48f Sunada Y, Ogushi H, Yamamoto T, Uto S, Sawano M, Tahara A, Tanaka H, Shiota Y, Yoshizawa K, Nagashima H. J. Am. Chem. Soc. 2018; 140: 4119
    • 48g Docherty JH, Peng J, Dominey AP, Thomas SP. Nat. Chem. 2017; 9: 595
  • 49 Hoyt JM, Shevlin M, Margulieux GW, Krska SW, Tudge MT, Chirik PJ. Organometallics 2014; 33: 5781
    • 50a Danopoulos AA, Wright JA, Motherwell WB. Chem. Commun. 2005; 784
    • 50b Danopoulos AA, Pugh D, Smith H, Saßmannshausen J. Chem. Eur. J. 2009; 15: 5491
  • 51 Viereck P, Rummelt SM, Soja NA, Pabst TP, Chirik PJ. Organometallics 2021; 40: 1053
  • 52 Lu P, Ren X, Xu H, Lu D, Sun Y, Lu Z. J. Am. Chem. Soc. 2021; 143: 12433