Synlett 2024; 35(01): 140-144
DOI: 10.1055/a-2012-0232
cluster
Functional Dyes

A Novel Heterocyclic Xanthene-Analogous pH Probe for ­Quantitative Monitoring of Cell Surface pH by Fluorescence ­Lifetime Imaging

a   State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. of China
,
Xinfu Zhang
a   State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. of China
,
Xiaoxi Li
b   Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, P. R. of China
,
Shulan Sun
b   Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, P. R. of China
,
Ze Hui Wang
a   State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. of China
,
Dingxuan Li
a   State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. of China
,
Yi Xiao
a   State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (Nos. 21901031, 22078047, 22174009, 22278059, and 82202861), the Dalian Science and Technology Innovation Fund (No. 2020JJ25CY014), Science and Technology Foundation of Liaoning Province (2020-YQ-08 and 2022-YQ-08), and the Fundamental Research Funds for the Central Universities (Nos. DUT21YG131, DUT21YG126, DUT18RC(3)027, DUT20RC(5)024, LD202115, and DUT22LAB601).


Abstract

Rapidly capturing slight changes in cell surface pH is extremely important to evaluate the rapid diffusion of acidic metabolites into the extracellular environment caused by disease and physiological pH fluctuations of cells. In this work, we designed a membrane-targeted pH probe, Mem-COC18 , based on a novel heterocyclic xanthene-analogous backbone. Mem-COC18 shows specific and stable staining ability towards membrane. Importantly, the fluorescence lifetime of Mem-COC18 is highly sensitive against acidity within membrane, which is in favor of quantifying pH through fluorescence lifetime imaging. Using Mem-COC18 , we recorded pH changes of 0.61 units on the surface of human cervical cancer cells (Hela) during glycolysis. Further on, we observed a robust pH-regulating mechanism of the plasma membrane that the pH fluctuation range within membrane (5.32–6.85) is much smaller than the change in extracellular environment (4.00–8.00). Consequently, we demonstrate a pH probe for quantifying small pH fluctuations within cell membrane that merits further evaluation for biology applications.

Supporting Information



Publication History

Received: 08 December 2022

Accepted after revision: 12 January 2023

Accepted Manuscript online:
12 January 2023

Article published online:
14 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, Triulzi T, Tuccitto A, Tagliabue E, Castelli C, Rivoltini L. Semin. Cancer Biol. 2017; 43: 74
    • 1b Wang S, Ren WX, Hou JT, Won M, An J, Chen XY, Shu J, Kim JS. Chem. Soc. Rev. 2021; 50: 8887
    • 2a Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, Baba Y. Cancer Cell Int. 2013; 13: 8
    • 2b Boedtkjer E, Pedersen SF. Annu. Rev. Physiol. 2020; 82: 103
  • 3 Brown TP, Ganapathy V. Pharmacol. Ther. 2020; 206: 17
  • 4 Webb SD, Sherratt JA, Fish RG. Novartis Found. Symp. 2001; 240: 169 ; discussion 181 5
  • 5 Zhang H, Fan JL, Wang JY, Zhang SZ, Dou BR, Peng XJ. J. Am. Chem. Soc. 2013; 135: 11663
    • 6a Yin JL, Huang L, Wu LL, Li JF, James TD, Lin WY. Chem. Soc. Rev. 2021; 50: 12098
    • 6b Zhu H, Fan JL, Du JJ, Peng XJ. Acc. Chem. Res. 2016; 49: 2115
    • 7a An J, Hu YG, Cheng K, Li C, Hou XL, Wang GL, Zhang XS, Liu B, Zhao YD, Zhang MZ. Biomaterials 2020; 234: 12
    • 7b Wang X, Sun J, Zhang WH, Ma XX, Lv JZ, Tang B. Chem. Sci. 2013; 4: 2551
    • 7c Lee MH, Park N, Yi C, Han JH, Hong JH, Kim KP, Kang DH, Sessler JL, Kang C, Kim JS. J. Am. Chem. Soc. 2014; 136: 14136
  • 8 Zhang XF, Wang ZH, Wang L, Bian H, Huang ZL, Xiao Y. ACS Nano 2022; 11: 1936
    • 9a Xia MC, Cai LS, Zhang SC, Zhang XR. Talanta 2018; 178: 355
    • 9b Ryan LS, Gerberich J, Haris U, Nguyen D, Mason RP, Lippert AR. ACS Sens. 2020; 5: 2925
    • 9c Gu KZ, Xu YS, Li H, Guo ZQ, Zhu SJ, Zhu SQ, Shi P, James TD, Tian H, Zhu WH. J. Am. Chem. Soc. 2016; 138: 5334
    • 9d Dong BL, Song XZ, Wang C, Kong XQ, Tang YH, Lin WY. Anal. Chem. 2016; 88: 4085
    • 9e Padilla-Parra S, Tramier M. BioEssays 2012; 34: 369
    • 9f Becker W. J. Microsc. 2012; 247: 119
    • 9g Borst JW, Visser A. Meas. Sci. Technol. 2010; 21: 21
    • 9h Klymchenko AS. Acc. Chem. Res. 2017; 50: 366
  • 10 Zhang XF, Wang L, Li N, Xiao Y. Chin. Chem. Lett. 2021; 32: 2395
    • 11a Ye ZW, Yang W, Wang C, Zheng Y, Chi WJ, Liu XG, Huang ZL, Li XY, Xiao Y. J. Am. Chem. Soc. 2019; 141: 14491
    • 11b Liu XG, Qiao QL, Tian WM, Liu WJ, Chen J, Lang MJ, Xu ZC. J. Am. Chem. Soc. 2016; 138: 6960
    • 11c Li J, Zhang MM, Yang L, Han YB, Luo X, Qian XH, Yang YJ. Chin. Chem. Lett. 2021; 32: 3865
    • 11d Wang N, Hao YM, Feng XW, Zhu HD, Zhang DZ, Wang T, Cui XY. Chin. Chem. Lett. 2022; 33: 133
    • 11e Miao R, Li J, Wang C, Jiang XF, Gao Y, Liu XL, Wang D, Li X, Liu XG, Fang Y. Adv. Sci. 2022; 9: 2104609
    • 11f Wang C, Chi WJ, Qiao QL, Tan DV, Xu ZC, Liu XG. Chem. Soc. Rev. 2021; 50: 12656
  • 12 Wu S, Yan Y, Hou H, Huang Z, Li D, Zhang X, Xiao Y. Anal. Chem. 2022; 94: 11238
    • 13a Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen QY, Gindin M, Gubin MM, van der Windt GJ. W, Tonc E, Schreiber RD, Pearce EJ, Pearce EL. Cell 2015; 162: 1229
    • 13b Cascone T, McKenzie JA, Mbofung RM, Punt S, Wang Z, Xu CY, Williams LJ, Wang ZQ, Bristow CA, Carugo A, Peoples MD, Li LR, Karpinets T, Huang L, Malu S, Creasy C, Leahey SE, Chen J, Chen Y, Pelicano H, Bernatchez C, Gopal YN. V, Heffernan TP, Hu JH, Wang J, Amaria RN, Garraway LA, Huang P, Yang PY, Wistuba II, Woodman SE, Roszik J, Davis RE, Davies MA, Heymach JV, Hwu P, Peng WY. Cell Metab. 2018; 27: 977
    • 14a Lu JR, Tan M, Cai QS. Cancer Lett. 2015; 356: 156
    • 14b Zhang DS, Li J, Wang FZ, Hu J, Wang SW, Sun YM. Cancer Lett. 2014; 355: 176
    • 14c Pajak B, Siwiak E, Soltyka M, Priebe A, Zielinski R, Fokt I, Ziemniak M, Jaskiewicz A, Borowski R, Domoradzki T, Priebe W. Int. J. Mol. Sci. 2020; 21: 19
  • 15 Anderson M, Moshnikova A, Engelman DM, Reshetnyak YK, Andreev OA. Proc. Natl. Acad. Sci. U.S.A. 2016; 113: 8177
  • 17 1-Methyl-4-{6-(4-methylpiperazin-1-yl)-4-oxido-8-oxo-4-phenyl-8H-phosphinino[3,2-b:5,6-b′]dithiophen-2-yl}-1-octadecylpiperazin-1-ium (Mem-C0C18) Iododecane (757 mg, 1.99 mmol) was added to a solution of S6 (34 mg, 66.33 μmol) in DMF (3 mL), the reaction mixture was stirred at 110 ° for 3 d. Cooling to room temperature, added Et2O (50 mL) to precipitate solids and filtered, the residue was purified by column chromatography (silica gel, CH2Cl2/MeOH = 8/1) to afford Mem-C0C18 (23 mg, 60 %) as the red solid. 1H NMR (400 MHz, DMSO): δ = 7.71–7.57 (m, 3 H), 7.54 (dd, J = 7.4, 2.7 Hz, 2 H), 6.59 (dd, J = 34.9, 5.6 Hz, 2 H), 3.70 (dd, J = 14.2, 4.5 Hz, 4 H), 3.55 (d, J = 4.5 Hz, 4 H), 3.10 (s, 3 H), 2.62 (s, 4 H), 2.42–2.26 (m, 3 H), 1.68 (s, 2 H), 1.24 (s, 30 H), 0.86 (t, J = 6.8 Hz, 3 H).