Synlett 2023; 34(14): 1732-1738
DOI: 10.1055/a-2014-2813
letter

An Efficient Route to Access Spirooxindole–Pyrazolone-Fused Cyclopentenes by a Diastereoselective [3+2] Annulation

Abhijeet S. Sabale
,
,
Ramakrishna G. Bhat
R.G.B. thanks DST-SERB (CRG/2019/005753), Government of India, for the generous research grant. The authors also thank IISER Pune for the financial assistance. A.S.S. and P.K.W. thank UGC New Delhi, Government of India, for providing fellowships.


Abstract

A DMAP-catalyzed, highly diastereoselective, [3+2] cycloaddition of pyrazolone-derived Morita–Baylis–Hillman carbonates to 3-methyleneoxindoles has been developed. A variety of structurally diverse and complex spiropyrazolone-fused oxindoles bearing three contiguous chiral centers have been synthesized in high yields (up to 98%) and with excellent diastereoselectivities (up to 99:1). Moreover, the synthetic potential of this protocol has been demonstrated by performing a Suzuki coupling reaction.

Supporting Information



Publication History

Received: 05 November 2022

Accepted after revision: 16 January 2023

Accepted Manuscript online:
16 January 2023

Article published online:
11 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Kotha S, Panguluri NR, Ali R. Eur. J. Org. Chem. 2017; 5316
    • 1b Reddy CR, Prajapti SK, Warudikar K, Ranjan R, Rao BB. Org. Biomol. Chem. 2017; 15: 3130
    • 1c James MJ, O’Brien P, Taylor RJ. K, Unsworth WP. Chem. Eur. J. 2016; 22: 2856
    • 1d Cao Z.-Y, Zhou J. Org. Chem. Front. 2015; 849
    • 1e Carreira EM, Fessard TC. Chem. Rev. 2014; 114: 8257
    • 1f Rios R. Chem. Soc. Rev. 2012; 41: 1060
    • 2a Degorce SL, Bodnarchuk MS, Scott JS. ACS Med. Chem. Lett. 2019; 48: 1198
    • 2b Müller G, Berkenbosch T, Benningshof JC. J, Stumpfe D, Bajorath J. Chem. Eur. J. 2017; 23: 703
    • 2c Ritchie TJ, MacDonald SJ. F. Drug Discovery Today 2009; 14: 1011
    • 2d Ritchie TJ, MacDonald SJ. F, Young RJ, Pickett SD. Drug Discovery Today 2011; 16: 164
  • 3 Tada I, Motoki M, Takahashi N, Miyata T, Takechi T, Uchida T, Takagi Y. Pestic. Sci. 1996; 48: 165
    • 4a Schlemminger I, Schmidt B, Flockerzi D, Tenor H, Zitt C, Hatzelmann A, Marx D, Braun C, Külzer R, Heuser A, Kley H.-P, Sterk GJ. WO 2010055083, 2010
    • 4b Schmidt B, Scheufler C, Volz J, Feth M.-P, Hummel R.-P, Hatzeimann A, Zitt C, Wohlsen A, Marx D, Kley H.-P, Marx D, Ockert D, Heuser A, Christiaans J.-AM, Sterk G.-J, Menge WM. P. B. WO 2008138939, 2008
    • 5a Mugishima T, Tsuda M, Kasai Y, Ishiyama H, Fukushi E, Kawabata J, Watanabe M, Akao K, Kobayashi J. J. Org. Chem. 2005; 70: 9430
    • 5b Mercado-Marin E, Garcia-Reynaga P, Romminger S, Pimenta EF, Romney DK, Lodewyk MW, Williams DE, Andersen RJ, Miller SJ, Tantillo DJ, Berlinck RG. S, Sarpong R. Nature 2014; 509: 318
    • 5c Cui CB, Kakeya H, Osada H. J. Antibiot. 1996; 49: 832
  • 6 Gicquel M, Gomez C, Garcia Alvarez MC, Pamlard O, Guérineau V, Jacquet E, Bignon J, Voituriez A, Marinetti A. J. Med. Chem. 2018; 61: 9386
  • 7 Wang B, Peng F, Huang W, Zhou J, Zhang N, Sheng J, Haruehanroengra P, He G, Han B. Acta Pharm. Sin. B 2020; 10: 1492
  • 8 Bao X, Wei S, Qian X, Qu J, Wang B, Zou L, Ge G. Org. Lett. 2018; 20: 3394
    • 9a Boddy AJ, Bull JA. Org. Chem. Front. 2021; 8: 1026
    • 9b Zhou L.-M, Qu R.-Y, Yang G.-F. Expert Opin. Drug Discovery 2020; 15: 603
    • 9c Liu S, Bao X, Wang B. Chem. Commun. 2018; 54: 11515
    • 9d Carceller-Ferrer L, Blay G, Pedro JR, Vila C. Synthesis 2021; 53: 215
    • 9e Han X, Yao W, Wang T, Tan YR, Yan Z, Kwiatkowski J, Lu Y. Angew. Chem. Int. Ed. 2014; 53: 5643
    • 9f Zhong F, Luo J, Chen G.-Y, Dou X, Lu Y. J. Am. Chem. Soc. 2012; 134: 10222
    • 9g Guo X, Shen Z.-A, Zhou X, Dai L, Lu Y. Sci. China Chem. 2023; 66: 127
  • 10 Chen Q, Liang J, Wang S, Wang D, Wang R. Chem. Commun. 2013; 49: 1657
  • 11 Cui B.-D, Li S.-W, Zuo J, Wu Z.-J, Zhang X.-M, Yuan W.-C. Tetrahedron 2014; 70: 1895
  • 12 Li J.-H, Feng T.-F, Du D.-M. J. Org. Chem. 2015; 80: 11369
  • 13 Liu X.-L, Zuo X, Wang J.-X, Chang S.-Q, Wei Q.-D, Zhou Y. Org. Chem. Front. 2019; 6: 1485
  • 14 Lin Y, Zhao B.-L, Du D.-M. J. Org. Chem. 2019; 84: 10209
  • 15 Wang C, Wen D, Chen H, Deng Y, Liu X, Liu X, Wang L, Gao F, Guo Y, Sun M, Wang K, Yan W. Org. Biomol. Chem. 2019; 17: 5514
  • 16 Luo W, Shao B, Li J, Xiao X, Song D, Ling F, Zhong W. Org. Chem. Front. 2020; 7: 1016
  • 17 Tian Z, Jiang J, Yan Z.-H, Luo Q.-Q, Zhan G, Huang W, Li X, Han B. Chem. Commun. 2022; 58: 5363
  • 18 Chen Y, Cui B.-D, Wang Y, Hang W.-Y, Wan N.-W, Bai M, Yuan W.-C, Chen Y.-Z. 2018; 83: 10465
    • 19a Warghude PK, Sabale AS, Bhat RG. Org. Biomol. Chem. 2020; 18: 1794
    • 19b Warghude PK, Bhowmick A, Bhat RG. Tetrahedron Lett. 2022; 97: 153791
    • 20a Warghude PK, Dharpure PD, Bhat RG. Tetrahedron Lett. 2018; 59: 4076
    • 20b Warghude PK, Sabale AS, Dixit R, Vanka K, Bhat RG. Org. Biomol. Chem. 2021; 19: 4338
  • 21 Chen Z.-C, Chen Z, Du W, Chen Y.-C. Chem. Rec. 2020; 20: 541
    • 22a Huang S, Wen H, Tian Y, Wang P, Qin W, Yan H. Angew. Chem. Int. Ed. 2021; 60: 21486
    • 22b Liao J, Xu J, Wu Y, Hou Y, Guo H. Adv. Synth. Catal. 2022; 364: 1074
    • 22c Wei X, Huang Y, Wang W, Wei S, Qu J, Wang B. Chem. Commun. 2022; 58: 9504
    • 22d Luo Q, Tian Z, Tang J, Wang Y, Tian Y, Peng C, Zhan G, Han B. ACS Catal. 2022; 12: 7221
    • 22e Yang Z.-H, Chen P, Chen Z.-C, Chen Z, Du W, Chen Y.-C. Angew. Chem. Int. Ed. 2021; 60: 13913
    • 23a Saeed R, Sakla AP, Shankaraiah N. Org. Biomol. Chem. 2021; 19: 7768
    • 23b Cao Y, Jiang X, Liu L, Shen F, Zhang F, Wang R. Angew. Chem. Int. Ed. 2011; 50: 9124
    • 23c Tan Y, Feng E.-L, Sun Q.-S, Lin H, Sun X, Lin G.-Q, Sun X.-W. Org. Biomol. Chem. 2017; 15: 778
    • 23d Zhou Y.-H, Lu Y, Hu X.-Y, Mei H.-J, Lin L.-L, Liu X.-H, Feng X.-M. Chem. Commun. 2017; 53: 2060
  • 24 CCDC 2189452 and CCDC 2183100 contains the supplementary crystallographic data for compounds 3p and 6b, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 25a Peng J, Huang X, Jiang L, Cui H.-L, Chen Y.-C. Org. Lett. 2011; 13: 4584
    • 25b Wei F, Huang H.-Y, Zhong N.-J, Gu C.-L, Wang D, Liu L. Org. Lett. 2015; 17: 1688
  • 26 Product 3a; Typical Procedure An oven-dried round-bottomed flask was charged with the MBH carbonate 1a (35 mg, 0.094 mmol), the indolinone 2a (24 mg, 0.112 mmol), DMAP (2.28 mg, 0.019 mmol), and CHCl3 (2 mL), and the mixture was stirred at rt for 12 h. When the reaction was complete (TLC), the solvent was evaporated under reduced pressure and the crude product was directly purified by column chromatography [silica gel (100–200 mesh), PE–EtOAc (70:30)] to give a brown solid; yield: 45 mg (92%, 99:1 dr); mp 78–80 °C. Rf = 0.3 (PE–EtOAc, 70:30). 1H NMR (400 MHz, CDCl3): δ = 8.0 (d, J = 7.0 Hz, 2 H), 7.6 (m, 3 H), 7.5–7.4 (m, 2 H), 7.4–7.3 (m, 3 H), 7.2–7.1 (m, 2 H), 7.1 (d, J = 2.2 Hz, 1 H), 6.8 (d, J = 25.2 Hz, 2 H), 4.9 (d, J = 2.3 Hz, 1 H), 3.7 (s, 3 H), 3.3 (s, 3 H), 2.2 (s, 3 H). 13C {1H} NMR (100 MHz, CDCl3): δ = 190.9, 174.1, 172.5, 169.1, 156.5, 144.7, 143.3, 142.8, 137.3, 136.8, 133.6, 130.1, 129.9, 128.9, 128.8, 125.9, 125.0, 124.0, 123.4, 119.7, 108.6, 67.2, 65.0, 53.8, 53.0, 26.9, 15.9. HRMS (ESI TOF): m/z [M + H]+ calcd for C31H26N3O5: 520.1872; found: 520.1876.