Synthesis 2024; 56(04): 657-667
DOI: 10.1055/a-2022-2063
special topic
Synthetic Development of Key Intermediates and Active Pharmaceutical Ingredients (APIs)

Elements-Continuous-Flow Platform for Coupling Reactions and Anti-viral Daclatasvir API Synthesis

Bhushan Mahajan
a   Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
Dnyaneshwar Aand
a   Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
Mandeep Purwa
a   Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
Taufiqueahmed Mujawar
a   Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
,
a   Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
a   Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
Ajay K. Singh
a   Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
› Author Affiliations
A.K.S. thanks the Department of Science and Technology (DST), Ministry of Science and Technology, New Delhi, India for financial assistance (DST/INSPIRE/04/2016/000247).


Abstract

A novel nanotextured Ni@Cu material embedded electro-microflow reactor with minimal electrode distance has been employed to synthesize biphenyls via the construction of a new C–C bond. The reported protocol is devoid of noble metals and involves co-reductant/oxidant-free conditions in a fast manner for the synthesis of substituted/unsubstituted biphenyl systems. The electro-reactor volume was optimized for gram-scale biphenyl synthesis and further extended for an integrated total process system reducing the tedious downstream process by selective removal of unwanted chemicals/solvent. The continuous microflow synthesis of daclatasvir has now been accomplished with a good yield.

Supporting Information



Publication History

Received: 07 November 2022

Accepted after revision: 30 January 2023

Accepted Manuscript online:
30 January 2023

Article published online:
07 March 2023

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Xie H, Liu H, Zhang Y, Huang E, Feng Y, Xiang X, Fang Q, Peng Z, Dong W, An D. Org. Process Res. Dev. 2021; 25: 838
  • 2 Tyagi M, Begnini F, Poongavanam V, Doak BC, Kihlberg J. Chem. Eur. J. 2020; 26: 49
  • 3 Di Terlizzi L, Scaringi S, Raviola C, Pedrazzani R, Bandini M, Fagnoni M, Protti S. J. Org. Chem. 2022; 87: 4863
  • 4 Schroeter F, Lerch S, Strassner T. Org. Process Res. Dev. 2018; 22: 1614
  • 5 Karimi B, Barzegar H, Vali H. Chem. Commun. 2018; 54: 7155
  • 6 Alimi OA, Akinnawo CA, Meijboom R. New J. Chem. 2020; 44: 18867
  • 7 Mohammadi M, Ghorbani-Choghamarani A. New J. Chem. 2020; 44: 2919
  • 8 Golestanzadeh M, Naeimi H. RSC Adv. 2019; 9: 27560
  • 9 Liu Y, Zhu Y, Li C. Front. Chem. Sci. Eng. 2018; 12: 3
  • 10 Guo X, Wu Y, Li G, Xia J.-B. ACS Catal. 2020; 10: 12987
  • 11 Pei X, Zhou G, Li X, Xu Y, Panicker RC, Srinivasan R. Org. Biomol. Chem. 2019; 17: 5703
  • 12 Lv L, Qiu Z, Li J, Liu M, Li C.-J. Nat. Commun. 2018; 9: 4739
  • 13 Rawat VK, Higashida K, Sawamura M. Synthesis 2021; 53: 3397
  • 14 Borys AM, Hevia E. Angew. Chem. Int. Ed. 2021; 60: 24659
  • 15 Bergmann AM, Oldham AM, You W, Brown MK. Chem. Commun. 2018; 54: 5381
  • 16 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
  • 17 Li C, Kawamata Y, Nakamura H, Vantourout JC, Liu Z, Hou Q, Bao D, Starr JT, Chen J, Yan M, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 13088
  • 18 Zhang H.-J, Chen L, Oderinde MS, Edwards JT, Kawamata Y, Baran PS. Angew. Chem. Int. Ed. 2021; 60: 20700
  • 19 Xu H, Liu J, Nie F, Zhao X, Jiang Z. J. Org. Chem. 2021; 86: 16204
  • 20 Lu L, Li H, Lei A. Chin. J. Chem. 2022; 40: 256
  • 21 Lakshmidevi J, Appa RM, Naidu BR, Prasad SS, Sarma LS, Venkateswarlu K. Chem. Commun. 2018; 54: 12333
  • 22 Wang C.-N, Lu Y.-H, Liu Y, Liu J, Yang Y.-Y, Zhao Z.-G. New J. Chem. 2021; 45: 3997
  • 23 Elsherbini M, Wirth T. Acc. Chem. Res. 2019; 52: 3287
  • 24 Noël T, Cao Y, Laudadio G. Acc. Chem. Res. 2019; 52: 2858
  • 25 Pletcher D, Green RA, Brown RC. D. Chem. Rev. 2018; 118: 4573
  • 26 Atobe M, Tateno H, Matsumura Y. Chem. Rev. 2018; 118: 4541
  • 27 Bédard A.-C, Adamo A, Aroh KC, Russell MG, Bedermann AA, Torosian J, Yue B, Jensen KF, Jamison TF. Science 2018; 361: 1220
  • 28 Mahajan B, Mujawar T, Ghosh S, Pabbaraja S, Singh AK. Chem. Commun. 2019; 55: 11852
  • 29 Aand D, Mahajan B, Pabbaraja S, Singh AK. React. Chem. Eng. 2019; 4: 812
  • 30 Rana A, Mahajan B, Ghosh S, Srihari P, Singh AK. React. Chem. Eng. 2020; 5: 2109
  • 31 Brandão P, Pineiro M, Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2019; 7188
  • 32 Wang D, Wang P, Wang S, Chen Y.-H, Zhang H, Lei A. Nat. Commun. 2019; 10: 2796
  • 33 Buglioni L, Raymenants F, Slattery A, Zondag SD. A, Noël T. Chem. Rev. 2022; 122: 2752
  • 34 Purwa M, Rana A, Singh AK. React. Chem. Eng. 2022; 7: 2084
  • 35 Aand D, Karekar S, Mahajan B, Pawar AB, Singh AK. Green Chem. 2018; 20: 4584
  • 36 May SA, Johnson MD, Braden TM, Calvin JR, Haeberle BD, Jines AR, Miller RD, Plocharczyk EF, Rener GA, Richey RN, Schmid CR, Vaid RK, Yu H. Org. Process Res. Dev. 2012; 16: 982
  • 37 Carneiro PF, Gutmann B, de Souza RO. M. A, Kappe CO. ACS Sustainable Chem. Eng. 2015; 3: 3445
  • 38 Hu C, Bai S, Gao L, Liang S, Yang J, Cheng S.-D, Mi S.-B, Qiu J. ACS Catal. 2019; 9: 11579
  • 39 Kawamata Y, Vantourout JC, Hickey DP, Bai P, Chen L, Hou Q, Qiao W, Barman K, Edwards MA, Garrido-Castro AF, deGruyter JN, Nakamura H, Knouse K, Qin C, Clay KJ, Bao D, Li C, Starr JT, Garcia-Irizarry C, Sach N, White HS, Neurock M, Minteer SD, Baran PS. J. Am. Chem. Soc. 2019; 141: 6392
  • 40 Iranpoor N, Firouzabadi H, Azadi R. J. Organomet. Chem. 2008; 693: 2469
  • 41 Seganish WM, Mowery ME, Riggleman S, DeShong P. Tetrahedron 2005; 61: 2117
  • 42 Zhou Z, Xu S, Zhang J, Kong W. Org. Chem. Front. 2020; 7: 3262
  • 43 Kim S, Gao Q, Yang F. WO2009020828, 2009
  • 44 Tran H, McCallum T, Morin M, Barriault L. Org. Lett. 2016; 18: 4308
  • 45 Kaboudin B, Mostafalu R, Yokomatsu T. Green Chem. 2013; 15: 2266
  • 46 Uzelac M, Mastropierro P, de Tullio M, Borilovic I, Tarrés M, Kennedy AR, Aromí G, Hevia E. Angew. Chem. Int. Ed. 2021; 60: 3247
  • 47 Cahiez G, Chaboche C, Mahuteau-Betzer F, Ahr M. Org. Lett. 2005; 7: 1943
  • 48 Wang L, Lu W. Org. Lett. 2009; 11: 1079
  • 49 Zong X, Cai J, Chen J, Wang P, Zhou G, Chen B, Li W, Ji M. Bioorg. Med. Chem. Lett. 2015; 25: 3147
  • 50 Kim S, Gao Q, Yang F. US Patent 20090041716A1, 2009
  • 51 Pack SK, Geng P, Smith MJ, Hamm J. US Patent 7728027B2, 2008