Synthesis 2024; 56(04): 668-676
DOI: 10.1055/a-2042-3417
special topic
Synthetic Development of Key Intermediates and Active Pharmaceutical Ingredients (APIs)

Copper-Catalyzed Carbonylative Cross-Coupling of Alkyl Iodides with Alcohols and Sodium Hydroxide: Synthesis of Esters and Carboxylic Acids

Omaïma Adaoudi
a   Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
,
Julie Le Bescont
a   Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
,
Antoine Bruneau-Voisine
b   Oril Industrie, 13 rue Auguste Desgenétais, CS 60125, 76210 Bolbec, France
,
a   Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
› Author Affiliations
This work was financially supported by Oril Industrie, affiliated to Les Laboratoires Servier, the Université libre de Bruxelles (ULB), the Fonds De La Recherche Scientifique - FNRS (PDR T.0160.18) and Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA, acknowledged for a graduate fellowship to O.A.) and the Région Wallone (Biogreen Platform).


Abstract

A general and inexpensive catalytic system is reported for the copper-catalyzed carbonylative coupling between alkyl iodides and alcohols or sodium hydroxide. Upon reaction with catalytic amounts of copper(I) chloride and N,N,N′,N′′,N′′-pentamethyldiethylenetriamine under a mild pressure of carbon monoxide (5 bar), a range of secondary and tertiary alkyl iodides are readily converted into the corresponding esters and carboxylic acids without competing direct nucleophilic substitution. Main advantages of this procedure include its broad applicability, the use of an especially inexpensive and available catalytic system, and its user-friendliness.

Supporting Information



Publication History

Received: 20 January 2023

Accepted after revision: 24 February 2023

Accepted Manuscript online:
24 February 2023

Article published online:
19 April 2023

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 For an overview of the Monsanto–CativaTM process for the synthesis of acetic acid, see: Sunley GJ, Watson DJ. Catal. Today 2000; 58: 293
  • 2 Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
  • 3 https://pmm.umicore.com (accessed Jan 12, 2023)

    • For representative examples, see:
    • 4a Dekleva TW, Forster D. J. Am. Chem. Soc. 1985; 107: 3565
    • 4b Dekleva TW, Forster D. J. Am. Chem. Soc. 1985; 107: 3568
    • 4c Wu L, Fang X, Liu Q, Jackstell R, Beller M, Wu X.-F. ACS Catal. 2014; 4: 2977
  • 5 Nagahara K, Ryu I, Komatsu M, Sonoda N. J. Am. Chem. Soc. 1997; 119: 5465
    • 6a Fukuyama T, Nishitani S, Inouye T, Morimoto K, Ryu I. Org. Lett. 2006; 8: 1383
    • 6b Fusano A, Sumino S, Nishitani S, Inouye T, Morimoto K, Fukuyama T, Ryu I. Chem. Eur. J. 2012; 18: 9415
    • 6c Sargent BT, Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 7520
    • 7a Chen Y, Su L, Gong H. Org. Lett. 2019; 21: 4689
    • 7b Geng H.-Q, Wu X.-F. Org. Lett. 2021; 23: 8062

    • For an account on copper-catalyzed carbonylative coupling reactions with alkyl halides, see:
    • 7c Cheng L.-J, Mankad NP. Acc. Chem. Res. 2021; 54: 2261
    • 8a Li Y, Wu X.-F. Commun. Chem. 2018; 1: 39
    • 8b Ai H.-J, Leidecker BN, Dam P, Kubis C, Rabeah J, Wu X.-F. Angew. Chem. Int. Ed. 2022; 61: e202211939
    • 9a Heck RF, Breslow DS. J. Am. Chem. Soc. 1963; 85: 2779
    • 9b Urata H, Maekawa H, Takahaehi S, Fuchikami T. J. Org. Chem. 1991; 56: 4320
  • 10 Ai H.-J, Yuan Y, Wu X.-F. Chem. Sci. 2022; 13: 2481
  • 11 For a review on photoinduced catalytic carbonylation reactions, see: Singh J, Sharma S, Sharma A. J. Org. Chem. 2021; 86: 24
  • 12 Ling J, Bruneau-Voisine A, Journot G, Evano G. Chem. Eur. J. 2022; 28: e202201356
  • 13 Zhao F, Russo P, Mancuso R, Gabriele B, Wu X.-F. J. Catal. 2022; 413: 907
  • 14 See Supporting Information for details.
  • 15 Prices from TCI Chemicals (accessed Jan 12, 2023): https://www.tcichemicals.com
  • 17 Lu L, Shi R, Liu L, Yan J, Lu F, Lei A. Chem. Eur. J. 2016; 22: 14484
  • 18 Whittaker AM, Dong VM. Angew. Chem. Int. Ed. 2015; 54: 1312
  • 19 Mamone P, Grünberg MF, Fromm A, Khan BA, Gooßen LJ. Org. Lett. 2012; 14: 3716
  • 20 Yoshiaki O, Kentarou F, Teruaki M. Bull. Chem. Soc. Jpn. 2005; 78: 1508
  • 21 La MT, Kim H.-K. Tetrahedron 2018; 74: 3748
  • 22 Kitano H, Ito H, Itami K. Org. Lett. 2018; 20: 2428
  • 23 Kawasaki T, Ishida N, Murakami M. Angew. Chem. Int. Ed. 2020; 59: 18267
  • 24 Ishihara K, Nakayama M, Ohara S, Yamamoto H. Tetrahedron 2002; 58: 8179
  • 25 Ren W, Wang M, Guo J, Zhou J, Chu J, Shi Y, Shi Y. Org. Lett. 2022; 24: 886
  • 26 Yatham VR, Harnying W, Kootz D, Neudörfl J.-M, Schlörer NE, Berkessel A. J. Am. Chem. Soc. 2016; 138: 2670
  • 27 Meng Q.-Y, Wang S, König B. Angew. Chem. Int. Ed. 2017; 56: 13426
  • 28 Nagy BS, Kappe CO, Ötvös SB. Adv. Synth. Catal. 2022; 364: 1998
  • 29 Wang Z, Zhu L, Yin F, Su Z, Li Z, Li C. J. Am. Chem. Soc. 2012; 134: 4258