Synlett 2023; 34(14): 1709-1714
DOI: 10.1055/a-2047-8301
letter

Re-evaluation of P-Chiral, N-Phosphoryl Sulfonamide Brønsted Acids in the Asymmetric Synthesis of 1,2,3,4-Tetrahydroquinoline-2-carboxylate Esters via Biomimetic Transfer Hydrogenation

Ifenna I. Mbaezue
,
Filip Topic
,
We are grateful for financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec (FRQNT).


Abstract

Enantioenriched heterocyclic and rigidified bioisosteres of amino acids are valuable building blocks in drug discovery, particularly in the design of peptidomimetic drugs. The rigidified bioisostere of phenylalanine, 1,2,3,4-tetrahydroquinoline-2-carboxylic acid, is found in several biologically active compounds. However, only a small number of successful methodologies have been reported for its asymmetric synthesis. To develop an environmentally benign and metal-free organocatalytic process for the preparation of this compound, a number of novel P-chiral, N-phosphoryl sulfonamide Brønsted acids were synthesized and evaluated in a biomimetic transfer hydrogenation reaction of quinoline-2-carboxylates to give the (R)-1,2,3,4-tetrahydroquinoline-2-carboxylates.

Supporting Information



Publication History

Received: 28 December 2022

Accepted after revision: 06 March 2023

Accepted Manuscript online:
06 March 2023

Article published online:
06 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 2 Kannenberg A, Rost D, Eibauer S, Tiede S, Blechert S. Angew. Chem. Int. Ed. 2011; 50: 3299
  • 3 Hardouin C, Baillard S, Barière F, Copin C, Craquelin A, Janvier S, Lemaitre S, Le Roux S, Russo O, Samson S. Org. Process Res. Dev. 2020; 24: 652

    • For a recent review see:
    • 4a Sridharan V, Suryavanshi PA, Menéndez JC. Chem. Rev. 2011; 111: 7157

    • For select examples, see:
    • 4b Snider BB, Ahn Y, O’Hare SM. Org. Lett. 2001; 3: 4217
    • 4c Rueping M, Antonchick AP, Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 3683
    • 4d Davies SG, Fletcher AM, Lee JA, Lorkin TJ. A, Roberts PM, Thomson JE. Org. Lett. 2013; 15: 2050
    • 4e Basarab GS, Doig P, Galullo V, Kern G, Kimzey A, Kutschke A, Newman JP, Morningstar M, Mueller J, Otterson L, Vishwanathan K, Zhou F, Gowravaram M. J. Med. Chem. 2015; 58: 6264
    • 4f Alm RA, Lahiri SD, Kutschke A, Otterson LG, McLaughlin RE, Whiteaker JD, Lewis LA, Su X, Huband MD, Gardner H, Mueller JP. Antimicrob. Agents Chemother. 2015; 59: 1478
    • 4g Tsutsumi H, Katsuyama Y, Izumikawa M, Takagi M, Fujie M, Satoh N, Shin-ya K, Ohnishi Y. J. Am. Chem. Soc. 2018; 140: 6631
    • 4h Taylor SN, Marrazzo J, Batteiger BE, Hook EW. III, Seña AC, Long J, Wierzbicki MR, Kwak H, Johnson SM, Lawrence K, Mueller J. N. Engl. J. Med. 2018; 379: 1835

      Reviews:
    • 5a Wang DS, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
    • 5b He Y.-M, Song F.-T, Fan Q.-H. Top. Curr. Chem. 2013; 343: 145
    • 5c Kim AN, Stoltz BM. ACS Catal. 2020; 10: 13834

      Reviews:
    • 6a Akiyama T. Chem. Rev. 2007; 107: 5744
    • 6b Rueping M, Dufour J, Schoepke FR. Green Chem. 2011; 13: 1084
  • 7 Matralis AM, Xanthopoulos D, Huot G, Lopes-Paciencia S, Cole C, de Vries H, Ferbeyre G, Tsantrizos YS. Bioorg. Med. Chem. 2018; 26: 5547
  • 8 Alatorre-Santamaría S, Gotor-Fernández V, Gotor V. Tetrahedron: Asymmetry 2010; 21: 2307
  • 9 Maj AM, Suisse I, Hardouin C, Agbossou-Niedercorn F. Tetrahedron 2013; 69: 9322
  • 10 Yuan M, Mbaezue II, Zhou Z, Topic F, Tsantrizos YS. Org. Biomol. Chem. 2019; 17: 8690
  • 11 Zhu Z.-H, Ding Y.-X, Wu B, Zhou Y.-G. Chem. Sci. 2020; 11: 10220
  • 12 Zhao Z.-B, Wang J, Zhu Z.-H, Chen M.-W, Zhou Y.-G. Org. Lett. 2021; 23: 9112
    • 13a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 13b Akiyama T. Chem. Rev. 2007; 107: 5744
  • 14 Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356
    • 15a Rueping M, Sugiono E, Schoepke FR. Synlett 2007; 1441
    • 15b Guo Q.-X, Liu H, Guo C, Luo S.-W, Gu Y, Gong L.-Z. J. Am. Chem. Soc. 2007; 129: 3790
    • 15c Gridnev ID, Kouchi M, Sorimachi K, Terada M. Tetrahedron Lett. 2007; 48: 497
  • 16 Nakashima D, Yamamoto H. J. Am. Chem. Soc. 2006; 128: 9626
  • 17 Akiyama T, Morita H, Itoh J, Fuchibe K. Org. Lett. 2005; 7: 2583
  • 18 Storer RI, Carrera DE, Ni Y, MacMillan DW. C. J. Am. Chem. Soc. 2006; 128: 84
    • 19a Hoffmann S, Seayad AM, List B. Angew. Chem. Int. Ed. 2005; 44: 7424
    • 19b Rueping M, Sugiono E, Azap C, Theissmann T, Bolte M. Org. Lett. 2005; 7: 3781
    • 19c Nguyen TB, Bousserrouel H, Wang Q, Guéritte F. Org. Lett. 2010; 12: 4705
    • 19d Greindl J, Hioe J, Sorgenfrei N, Morana F, Gschwind RM. J. Am. Chem. Soc. 2016; 138: 15965
    • 20a Itoh J, Fuchibe K, Akiyama T. Angew. Chem. Int. Ed. 2008; 47: 4016
    • 20b Zeng M, Kang Q, He Q.-L, You S.-L. Adv. Synth. Catal. 2008; 350: 2169
    • 20c Zhang J.-W, Cai Q, Shi X.-X, Zhang W, You S.-L. Synlett 2011; 1239
  • 21 Zhang L.-D, Zhong L.-R, Xi J, Yang XL, Yao Z.-J. J. Org. Chem. 2016; 81: 1899
  • 22 Vellalath S, Čorić I, List B. Angew. Chem. Int. Ed. 2010; 49: 9749
  • 23 For recent reviews, see: Phillips AM. F, Pombeiro AJ. L. Org. Biomol. Chem. 2017; 15: 2307
  • 24 Das A, Volla CM. R, Atodiresei I, Bettray W, Rueping M. Angew. Chem. Int. Ed. 2013; 52: 8008
    • 25a Tsuji N, Kennemur JL, Buyck T, Lee S, Prévost S, Kaib PS. J, Bykov D, Farès C, List B. Science 2018; 359: 1501
    • 25b Bae HY, Höfler D, Kaib PS. J, Kasaplar P, De CK, Döhring A, Lee S, Kaupmees K, Leito I, List B. Nat. Chem. 2018; 10: 888
  • 26 Han ZS, Wu H, Qu B, Wang Y, Wu L, Zhang L, Xu Y, Wu L, Zhang Y, Lee H, Roschangar F, Song JJ, Senanayake CH. Tetrahedron Lett. 2019; 60: 1834
  • 27 Hayashi M, Nakamura S. Angew. Chem. Int. Ed. 2011; 50: 2249
  • 28 Kondoh A, Terada M. Org. Lett. 2013; 15: 4568
  • 29 Kondoh A, Aoki T, Terada M. Org. Lett. 2014; 16: 3528
  • 30 Horwitz MA, Zavesky BP, Martinez-Alvarado JI, Johnson JS. Org. Lett. 2016; 18: 36
  • 31 Kondoh A, Takel A, Terada M. Synlett 2016; 27: 1848
  • 32 Kondoh A, Ishiukawa S, Aoki T, Terada M. ChemCommun 2016; 52: 12513
  • 33 Kondoh A, Terada M. Org. Biomol. Chem. 2016; 14: 4704
  • 34 Kondoh A, Ozawa R, Aoki T, Terada M. Org. Biomol. Chem. 2017; 15: 7277
  • 35 Kondoh A, Aoki T, Terada M. Chem. Eur. J. 2017; 23: 2769
  • 36 Kondoh A, Aita K, Ishikawa S, Terada M. Org. Lett. 2020; 22: 2105
  • 37 Kondoh A, Tasato N, Aoki A, Terada M. Org. Lett. 2020; 22: 5170
  • 38 Kondoh A, Ojima R, Terada M. Org. Lett. 2021; 23: 7894
  • 39 Yamamoto Y, Tshida Y, Takamizu Y, Yasui T. Adv. Synth. Catal. 2019; 361: 3739
  • 40 Cheibas C, Fincias N, Casaretto N, Garrec J, Et Kaϊm L. Angew. Chem. Int. Ed. 2022; 61: e202116249
  • 41 Lin Q, Zheng S, Chen L, Wu J, Li J, Liu P, Dong S, Liu X, Peng Q, Feng X. Angew. Chem. Int. Ed. 2022; 61: e202203650
  • 42 Yang J, Qian D.-W, Yang S.-D. Beilstein J. Org. Chem. 2022; 18: 1188
  • 43 For recent reviews, see: Glueck DS. Synthesis 2022; 54: 271
  • 44 An oven-dried pressure vessel was cooled to ambient temperature in a desiccator and charged with methyl quinoline-2-carboxylate (188 mg, 1.00 mmol), Hantzsch ester (634 mg, 2.50 mmol) and 14e (25.2 mg, 0.0501 mmol). Subsequently, anhydrous cyclohexane (5.0 mL) was added. The vial was capped, and the mixture was stirred vigorously at 50 °C for 4 h. The resulting solution was diluted with DCM (2.5 mL) and SiO2 was added. The mixture was concentrated in vacuo and the crude material was first purified on Et3N-deactvated SiO2 by flash chromatography (0–3% EtOAc/hexanes), with the co-elution of some Hantzsch pyridine by-product. Purification by flash column chromatography on SiO2 (0–5% EtOAc/hexanes) afforded the desired product 8 (R2 = CO2Me, R6=H), as a yellow oil in 69% yield (130 mg, 0.681 mmol) and 46% ee. Chiral HPLC method: Chiralpak AD, hexane/IPA = 80:20, 1 mL/min, λ = 254 nm; tR = 6.49 [(R)-, major], 7.78 [(S)-, minor] min. 1H NMR (400 MHz, CDCl3): δ = 7.00 (t, J = 7.6 Hz, 1 H), 6.96 (d, J = 7.4 Hz, 1 H), 6.65 (td, J = 7.3, 1.2 Hz, 1 H), 6.59 (d, J = 8.0 Hz, 1 H), 4.36 (s, 1 H), 4.05 (dd, J = 8.8, 3.8 Hz, 1 H), 3.78 (s, 3 H), 2.84 (ddd, J = 15.1, 9.3, 5.4 Hz, 1 H), 2.75 (dt, J = 16.3, 5.5 Hz, 1 H), 2.29 (dtd, J = 13.0, 5.6, 3.8 Hz, 1 H), 2.01 (dtd, J = 12.9, 9.1, 5.2 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 173.8, 143.1, 129.3, 127.2, 120.7, 117.8, 114.7, 54.1, 52.5, 26.0, 24.8.