Synthesis 2023; 55(18): 2799-2816
DOI: 10.1055/a-2096-4349
review
Special Issue Electrochemical Organic Synthesis

Progress in S–X Bond Formation by Halogen-Mediated Electrochemical Reactions

Juan Du
a   Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, Guangxi 530001, P. R. of China
,
Ya-long Du
a   Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, Guangxi 530001, P. R. of China
,
Qing-wen Gui
b   College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, P. R. of China
› Author Affiliations
This work was financially supported by the Guangxi Science and Technology Base and Special Talents (Guike AD23026279), the Science and Technology Program of Hunan Province (2021RC2079), the China Postdoctoral Science Foundation (2022M720541 and 2022T150075), the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-CXRC-038), Start-up Funding for Scientific Research of Nanning Normal University (86612345) and the BAGUI Scholars Program of Guangxi Province of China.


Abstract

Sulfur-containing compounds are very common and important heteroatom skeletons and are widely found in natural products, pharmaceuticals and bioactive compounds. Moreover, the development of synthetic routes to organosulfur compounds has attracted considerable attention due to their wide range of applications in organic chemistry, the pharmaceutical industry and in materials science. As one of most powerful, green and eco-friendly research areas, organic electrosynthesis, in contrast to conventional organic synthesis, can avoid the use of harmful stoichiometric external oxidants or reductants. Importantly, halide salts are widely used as supporting electrolytes and redox catalysts in indirect electrosynthesis to avoid the limitations imposed by high overpotentials in direct electrosynthesis. In recent years, significant progress has been made on the halogen-mediated electrosynthesis of organosulfur compounds. In this review, the scope, limitations and mechanisms of halogen-mediated electrochemical transformations of sulfur-containing compounds are presented and discussed.

1 Introduction

2 S–C Bond Formation

2.1 Organic Thiocyanates

2.2 Sulfonyl Compounds

2.3 Other Sulfides

3 Formation of Other S–X (X = N, O, S, P) Bonds

4 Conclusion and Outlook



Publication History

Received: 28 March 2023

Accepted after revision: 19 May 2023

Accepted Manuscript online:
19 May 2023

Article published online:
27 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Moriarty RM, Naithani R, Surve B. Mini-Rev. Med. Chem. 2007; 7: 827
    • 1b Hwang D, Kim M, Park H, Jeong MI, Jung W, Kim B. Nutrients 2019; 11: 1010
    • 1c Awakawa T, Barra L, Abe I. J. Ind. Microbiol. Biotechnol. 2021; 48: kuab001
    • 1d Zhu HZ, Dronamraju V, Xie W, More SS. Med. Chem. Res. 2021; 30: 305
    • 1e Mustafa M, Winum JY. Expert Opin. Drug Discovery 2022; 17: 501
    • 1f Smith JM, Dixon JA, deGruyter JN, Baran PS. J. Med. Chem. 2019; 62: 2256
    • 2a Supuran CT. Molecules 2017; 22: 1642
    • 2b Hoegberg T, Bengtsson S, De Paulis T, Johansson L, Stroem P, Hall H, Oegren SO. J. Med. Chem. 1990; 33: 1155
    • 2c Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC. J. Med. Chem. 1997; 40: 1347
    • 2d Feng M, Tang B, Liang S, Jiang X. Curr. Top. Med. Chem. 2015; 16: 1200
    • 2e Scott KA, Njardarson JT. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms . In Sulfur Chemistry . Jiang X. Springer International Publishing; Cham: 2019: 1-34
    • 3a Wang L, He W, Yu Z. Chem. Soc. Rev. 2013; 42: 599
    • 3b Thanh Binh N. Adv. Synth. Catal. 2017; 359: 1066
    • 3c Zhang X, Chen K, Sun Z, Hu G, Xiao R, Cheng H.-M, Li F. Energy Environ. Sci. 2020; 13: 1076
    • 3d Reddy RJ, Kumari AH. RSC Adv. 2021; 11: 9130
    • 3e Lv Y, Cui H, Meng N, Yue H, Wei W. Chin. Chem. Lett. 2022; 33: 97
  • 4 Kolbe H. J. Prakt. Chem. 1847; 41: 137
  • 5 Baizer MM. J. Electrochem. Soc. 1964; 111: 215
    • 6a Yan H, Hou ZW, Xu HC. Angew. Chem. Int. Ed. 2019; 58: 4592
    • 6b Erchinger JE, Gemmeren M. Asian J. Org. Chem. 2020; 10: 50
    • 6c Li M, Hong J, Xiao W, Yang Y, Qiu D, Mo F. ChemSusChem 2020; 13: 1661
    • 6d Wang X, Xu X, Wang Z, Fang P, Mei T. Chin. J. Org. Chem. 2020; 40: 3738
    • 7a Martins GM, Meirinho AG, Ahmed N, Braga AL, Mendes SR. ChemElectroChem 2019; 6: 5928
    • 7b Liu W, Hao L, Zhang J, Zhu T. ChemSusChem 2022; 15: e202102557
    • 7c Qian BC, Zhu CZ, Shen GB. ACS Omega 2022; 7: 39531
    • 7d Ma X, Huang G, Gao L, Zhan L, Wei W. Chin. J. Org. Chem. 2023; 43: 17
    • 7e Jamshidi M, Amani A, Khazalpour S, Torabi S, Nematollahi D. New J. Chem. 2021; 45: 18246
    • 7f Liang S, Hofman K, Friedrich M, Keller J, Manolikakes G. ChemSusChem 2021; 14: 4878
    • 7g Amri N, Wirth T. Chem. Rec. 2021; 21: 2526
    • 7h Ye Z, Zhang X, Ma W, Zhang F. Green Chem. 2023; 25: 2524
    • 7i Blum SP, Hofman K, Manolikakes G, Waldvogel SR. Chem. Commun. 2021; 57: 8236
    • 9a Yan YZ, Cui C, Li Z. Chin. J. Org. Chem. 2018; 38: 2501
    • 9b Guo W, Tao KL, Tan W, Zhao MM, Zheng LY, Fan XL. Org. Chem. Front. 2019; 6: 2048
    • 9c Hu B.-L, Song Y.-K, Zhang G, Yao Z, Zhang X.-G. J. Fluorine Chem. 2020; 239: 109640
    • 9d Peng K, Dong ZB. Adv. Synth. Catal. 2021; 363: 1185
  • 10 Castanheiro T, Suffert J, Donnard M, Gulea M. Chem. Soc. Rev. 2016; 45: 494
  • 11 Kang L.-S, Luo M.-H, Lam CM, Hu L.-M, Little RD, Zeng C.-C. Green Chem. 2016; 18: 3767
  • 12 Liang S, Zeng C.-C, Tian H.-Y, Sun B.-G, Luo X.-G, Ren F.-z. Adv. Synth. Catal. 2018; 360: 1444
  • 13 Takenaka T, Honda K, Fujikura T, Niigata K, Tachikawa S, Inukai N. J. Pharm. Pharmacol. 1984; 36: 539
  • 14 Cross PE, Arrowsmith JE, Thomas GN, Gwilt M, Burges RA, Higgins AJ. J. Med. Chem. 1990; 33: 1151
  • 15 Quesnel LB, Al-Najjar AR, Buddhavudhikrai P. J. Appl. Bacteriol. 1978; 45: 397
  • 16 Uchida T, Hayashi K, Kido H, Watanabe M. J. Pharm. Pharmacol. 1992; 44: 39
  • 17 Grell W, Hurnaus R, Griss G, Sauter R, Rupprecht E, Mark M, Luger P, Nar H, Wittneben H, Müller P. J. Med. Chem. 1998; 41: 5219
  • 18 Trost BM, Kalnmals CA. Chemistry 2019; 25: 11193
  • 19 Liu NW, Liang S, Manolikakes G. Synthesis 2016; 48: 1939
  • 20 Luo Y.-C, Pan X.-J, Yuan G.-Q. Tetrahedron 2015; 71: 2119
  • 21 Terent’ev AO, Mulina OM, Pirgach DA, Ilovaisky AI, Syroeshkin MA, Kapustina NI, Nikishin GI. Tetrahedron 2017; 73: 6871
  • 22 Lai YL, Mo Y, Yan S, Zhang S, Zhu L, Luo J, Guo H, Cai J, Liao J. RSC Adv. 2020; 10: 33155
  • 23 Chang M.-Y, Chen P.-Y, Chan C.-K, Lo N.-C. Synthesis 2017; 28: 4469
  • 24 Feng M.-L, Xi L.-Y, Chen S.-Y, Yu X.-Q. Eur. J. Org. Chem. 2017; 2746
  • 25 Zhang Y.-Z, Mo Z.-Y, Wang H.-S, Wen X.-A, Tang H.-T, Pan Y.-M. Green Chem. 2019; 21: 3807
  • 26 Mulina OM, Zhironkina NV, Paveliev SA, Demchuk DV, Terent’ev AO. Org. Lett. 2020; 22: 1818
  • 27 Ye ZP, Gao J, Duan XY, Guan JP, Liu F, Chen K, Xiao JA, Xiang HY, Yang H. Chem. Commun. 2021; 57: 8969
    • 28a Mai WP, Wang JT, Yang LR, Yan JW, Mao P, Xiao YM, Qu LB. Chin. J. Org. Chem. 2014; 34: 1958
    • 28b Heng R, Zard SZ. Tetrahedron Lett. 2015; 56: 3679
    • 28c Chen Z, Zhou Q, Chen QN, Chen P, Xiong BQ, Liang Y, Tang KW, Xie J, Liu Y. Org. Biomol. Chem. 2020; 18: 8677
    • 28d Xiong T, Zhang Q. Chem. Soc. Rev. 2021; 50: 8857
  • 29 Jiang Y.-Y, Liang S, Zeng C.-C, Hu L.-M, Sun B.-G. Green Chem. 2016; 18: 6311
  • 30 Shen ZJ, Huang B, Ma N, Yao L, Yang C, Guo L, Xia W. Adv. Synth. Catal. 2021; 363: 1944
  • 31 Yin Z, Yu Y, Mei H, Han J. Green Chem. 2021; 23: 3256
  • 32 Kim YJ, Kim DY. Tetrahedron Lett. 2019; 60: 1287
  • 33 Zhang TS, Hao WJ, Wang R, Wang SC, Tu SJ, Jiang B. Green Chem. 2020; 22: 4259
  • 34 Zuo HD, Hao WJ, Zhu CF, Guo C, Tu SJ, Jiang B. Org. Lett. 2020; 22: 4471
  • 35 Wen J, Shi W, Zhang F, Liu D, Tang S, Wang H, Lin XM, Lei A. Org. Lett. 2017; 19: 3131
  • 36 Mo ZY, Zhang YZ, Huang GB, Wang XY, Pan YM, Tang HT. Adv. Synth. Catal. 2020; 362: 2160
  • 37 Zhang X, Lu D, Wang Z. Eur. J. Org. Chem. 2021; 4284
  • 38 Aleti RR, Festa AA, Storozhenko OA, Bondarev VL, Segida OO, Paveliev SA, Rybakov VB, Varlamov AV, Voskressensky LG. Org. Lett. 2022; 24: 9337
  • 39 Dong X, Klein M, Waldvogel SR, Morandi B. Angew. Chem. Int. Ed. 2023; 62: e202213630
    • 40a Peng H, Cheng Y, Ni N, Li M, Choudhary G, Chou HT, Lu C.-D, Tai PC, Wang B. ChemMedChem 2009; 4: 1457
    • 40b Mandai T, Yanagi T, Araki K, Morisaki Y, Kawada M, Otera J. J. Am. Chem. Soc. 1984; 106: 3670
    • 40c Kiren S, Padwa A. J. Org. Chem. 2009; 74: 7781
    • 40d Jannapu Reddy R, Haritha Kumari A, Kumar JJ. Org. Biomol. Chem. 2021; 19: 3087
  • 41 Pan X.-J, Gao J, Yuan G.-Q. Tetrahedron 2015; 71: 5525
  • 42 Yavari I, Shaabanzadeh S. Org. Lett. 2020; 22: 464
  • 43 Wei WJ, Zhong YJ, Feng YF, Gao L, Tang HT, Pan YM, Ma XL, Mo ZY. Adv. Synth. Catal. 2022; 364: 726
  • 44 Chen C, Niu P, Shen Z, Li M. J. Electrochem. Soc. 2018; 165: G67
  • 45 Liu X, Cai TC, Guo D, Nong Z, Yang Y, Li Q, Jiang H, Liu X, Gui QW. Chem. Commun. 2022; 58: 657
  • 46 He TJ, Ye Z, Ke Z, Huang JM. Nat. Commun. 2019; 10: 833
  • 47 Lu F, Yang Z, Wang T, Wang T, Zhang Y, Yuan Y, Lei A. Chin. J. Chem. 2019; 37: 547
  • 48 Wan JL, Huang JM. Adv. Synth. Catal. 2022; 364: 2648
  • 49 Li G, Yu K, Yang J, Xu B, Chen Q. J. Org. Chem. 2021; 86: 15946
    • 50a Shibahara F, Murai T. J. Synth. Org. Chem. Jpn. 2011; 69: 28
    • 50b Tavares L, Santos L, Norena CP. Z. Trends Food Sci. Tech. 2021; 114: 232
    • 50c Pan ZY, Brett DJ. L, He GJ, Parkin IP. Adv. Energy Mater. 2022; 12: 2103483
    • 52a Ghorab MM, Alsaid MS, Nissan YM. Acta Pol. Pharm. 2014; 71: 603
    • 52b Al-Dosari MS, Ghorab MM, Al-Said MS, Nissan YM. Chem. Pharm. Bull. 2013; 61: 50
    • 52c Ghorab MM, Alsaid MS, Nissan YM, Ashour AE, Al-Mishari AA, Kumar A, Ahmed SF. Chem. Pharm. Bull. 2016; 64: 1747
    • 52d Al-Dosari MS, Ghorab MM, AlSaid MS, Nissan YM, Ahmed AB. Eur. J. Med. Chem. 2013; 69: 373
    • 52e Ghorab MM, Alsaid MS, Al-Dosari MS. Lat. Am. J. Pharm. 2016; 35: 1587
    • 53a Ban S, Xie H, Li Q, Zheng F. Chin. J. Org. Chem. 2011; 31: 1350
    • 53b Ashfaq M, Shah SS. A, Najjam T, Shaheen S, Rivera G. Mini-Rev. Org. Chem. 2013; 10: 160
    • 53c Mondal S. Synth. Commun. 2021; 51: 1023
    • 53d Wu H, Chen X, Sun N, Sanchez-Mendoza A. Synth. Commun. 2021; 51: 2287
    • 54a Wei W, Liu C, Yang D, Wen J, You J, Wang H. Adv. Synth. Catal. 2015; 357: 987
    • 54b Yang K, Ke M, Lin Y, Song Q. Green Chem. 2015; 17: 1395
  • 55 Jiang YY, Wang QQ, Liang S, Hu LM, Little RD, Zeng CC. J. Org. Chem. 2016; 81: 4713
  • 56 Zhang C, Chen Y, Yuan G. Chin. J. Chem. 2016; 34: 1277
  • 57 Terent’ev AO, Mulina OM, Pirgach DA, Syroeshkin MA, Glinushkin AP, Nikishin GI. Mendeleev Commun. 2016; 26: 538
  • 58 Huang H, Yuan G, Li X, Jiang H. Tetrahedron Lett. 2013; 54: 7156
  • 59 Mo Z.-Y, Swaroop TR, Tong W, Zhang Y.-Z, Tang H.-T, Pan Y.-M, Sun H.-B, Chen Z.-F. Green Chem. 2018; 20: 4428
  • 60 Terent’ev AO, Mulina OM, Ilovaisky AI, Kokorekin VA, Nikishin GI. Mendeleev Commun. 2019; 29: 80
    • 61a Zhang X, Cui T, Zhang Y, Gu W, Liu P, Sun P. Adv. Synth. Catal. 2019; 361: 2014
    • 61b Huang P, Wang P, Tang S, Fu Z, Lei A. Angew. Chem. Int. Ed. 2018; 57: 8115
  • 62 Terent’ev AO, Mulina OM, Parshin VD, Kokorekin VA, Nikishin GI. Org. Biomol. Chem. 2019; 17: 3482
  • 63 Zhong Z, Xu P, Ma J, Zhou A. Tetrahedron 2021; 99: 132444
    • 64a Kumar TS, Yang T, Mishra S, Cronin C, Chakraborty S, Shen J.-B, Liang BT, Jacobson KA. J. Med. Chem. 2013; 56: 902
    • 64b McReynolds MD, Dougherty JM, Hanson PR. Chem. Rev. 2004; 104: 2239
    • 64c Lauer AM, Mahmud F, Wu J. J. Am. Chem. Soc. 2011; 133: 9119
    • 64d Liu Y.-C, Lee C.-F. Green Chem. 2014; 16: 357
    • 64e Morrison DC. J. Am. Chem. Soc. 1955; 77: 181
  • 65 Li CY, Liu YC, Li YX, Reddy DM, Lee CF. Org. Lett. 2019; 21: 7833
  • 66 Chen Y, Li M, Gong Z, Shen Z. Phosphorus, Sulfur Silicon Relat. Elem. 2020; 196: 19
  • 67 Zhao L, Liu X, Shi S, Wu Z, Guo X, Shen Z, Li M. Electrochim. Acta 2021; 389: 138748
  • 68 Klein M, Troglauer DL, Waldvogel SR. JACS Au 2023; 3: 575