Synthesis 2023; 55(24): 4080-4090
DOI: 10.1055/a-2109-1642
feature

Gold(I)-Catalyzed Dearomatization–Allenene Reaction for the Construction of Polycycles with Excellent Diastereoselectivity

Nina Semleit
,
This work was supported by the Deutsche Forschungsgemeinschaft (DFG; HA 2973/17-1).


Abstract

The synthesis of complex polycycles starting from simple building blocks in just a few reaction steps is usually very challenging. Herein, we present the gold(I)-catalyzed synthesis of various polycycles via the dearomatization–allenene reaction of aryl propargyl ethers with different nucleophiles. Depending on the starting material, polycycles can be isolated in yields up to 94% and with an enantiomeric excess of 95%. Quantum chemical calculations show that for all starting materials a Claisen rearrangement to the allenene occurs in the first reaction sequence. The subsequent cyclization and reaction with a nucleophile leads to various polycycles with the formation of up to six new C–C bonds in only one reaction step. All reactions proceed with excellent dia­stereoselectivity, with an α-quaternary carbonyl carbon present in the products.

Supporting Information



Publication History

Received: 27 April 2023

Accepted after revision: 12 June 2023

Accepted Manuscript online:
12 June 2023

Article published online:
10 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hashmi AS. K, Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896 ; Angew. Chem. 2006, 118, 8064
  • 2 Hashmi AS. K. Chem. Rev. 2007; 107: 3180
  • 3 Arcadi A. Chem. Rev. 2008; 108: 3266
  • 4 Fürstner A. Chem. Soc. Rev. 2009; 38: 3208
  • 5 Corma A, Leyva-Pérez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
  • 6 Bandini M. Chem. Soc. Rev. 2011; 40: 1358
  • 7 Rudolph M, Hashmi AS. K. Chem. Soc. Rev. 2012; 41: 2448
  • 8 Xie J, Pan C, Abdukader A, Zhu C. Chem. Soc. Rev. 2014; 43: 5245
  • 9 Qian D, Zhang J. Chem. Soc. Rev. 2015; 44: 677
  • 10 Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
  • 11 Liu L, Zhang J. Chem. Soc. Rev. 2016; 45: 506
  • 12 Pflästerer D, Hashmi AS. K. Chem. Soc. Rev. 2016; 45: 1331
  • 13 Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Chem. Rev. 2021; 121: 8756
  • 14 Wang T, Hashmi AS. K. Chem. Rev. 2021; 121: 8948
  • 15 Mascareñas JL, Varela I, López F. Acc. Chem. Res. 2019; 52: 465
  • 16 Ohno H. Isr. J. Chem. 2013; 53: 869
  • 17 Asiri AM, Hashmi AS. K. Chem. Soc. Rev. 2016; 45: 4471
  • 18 Yang W, Hashmi AS. K. Chem. Soc. Rev. 2014; 43: 2941
  • 19 Aubert C, Fensterbank L, Garcia P, Malacria M, Simonneau A. Chem. Rev. 2011; 111: 1954
  • 20 Cañeque T, Truscott FM, Rodriguez R, Maestri G, Malacria M. Chem. Soc. Rev. 2014; 43: 2916
  • 21 Krause N, Winter C. Chem. Rev. 2011; 111: 1994
  • 22 Belmont P, Parker E. Eur. J. Org. Chem. 2009; 6075
  • 23 Tarselli MA, Chianese AR, Lee SJ, Gagné MR. Angew. Chem. Int. Ed. 2007; 46: 6670 ; Angew. Chem. 2007, 119, 6790
  • 24 Chen C, Zou Y, Chen X, Zhang X, Rao W, Chan PW. H. Org. Lett. 2016; 18: 4730
  • 25 Buzas A, Gagosz F. J. Am. Chem. Soc. 2006; 128: 12614
  • 26 Chen X, Zhou Y, Jin J, Farshadfar K, Ariafard A, Rao W, Chan PW. H. Adv. Synth. Catal. 2020; 362: 1084
  • 27 Claisen L. Ber. Dtsch. Chem. Ges. 1912; 45: 3157
  • 28 Cao T, Deitch J, Linton EC, Kozlowski MC. Angew. Chem. Int. Ed. 2012; 51: 2448 ; Angew. Chem. 2012, 124, 2498
  • 29 An J, Parodi A, Monari M, Reis MC, Lopez CS, Bandini M. Chem. Eur. J. 2017; 23: 17473
  • 30 Peruzzi MT, Lee SJ, Gagné MR. Org. Lett. 2017; 19: 6256
  • 31 Semleit N, Kreuzahler M, Haberhauer G. Eur. J. Org. Chem. 2020; 6629
  • 32 Semleit N, Haberhauer G. Org. Lett. 2021; 23: 9635
  • 33 Kreuzahler M, Daniels A, Wölper C, Haberhauer G. J. Am. Chem. Soc. 2019; 141: 1337
  • 34 Kreuzahler M, Haberhauer G. Angew. Chem. Int. Ed. 2020; 59: 9433 ; Angew. Chem. 2020, 132, 9519
  • 35 Kreuzahler M, Haberhauer G. Angew. Chem. Int. Ed. 2020; 59: 17739 ; Angew. Chem. 2020, 132, 17892
  • 36 Nieto-Oberhuber C, Muñoz MP, López S, Jiménez-Núñez E, Nevado C, Herrero-Gómez E, Raducan M, Echavarren AM. Chem. Eur. J. 2006; 12: 1677
  • 37 Clayden J, Greeves N, Warren S. Organic Chemistry . Oxford University Press; Oxford: 2012
  • 38 Wang L, Zhou Y, Su Z, Zhang F, Cao W, Liu X, Feng X. Angew. Chem. Int. Ed. 2022; 61: e202211785 ; Angew. Chem. 2022, 134, e202211785
  • 39 Liu Y, Hu H, Zheng H, Xia Y, Liu X, Lin L, Feng X. Angew. Chem. Int. Ed. 2014; 53: 11579 ; Angew. Chem. 2014, 126, 11763
  • 40 Hashmi AS. K, Weyrauch JP, Rudolph M, Kurpejović E. Angew. Chem. Int. Ed. 2004; 43: 6545 , Angew. Chem. 2004, 116, 6707
  • 41 Miehlich B, Savin A, Stoll H, Preuss H. Chem. Phys. Lett. 1989; 157: 200
  • 42 Becke AD. Phys. Rev. A: Gen. Phys. 1988; 38: 3098
  • 43 Lee C, Yang W, Parr RG. Phys. Rev. B: Condens. Matter Mater. Phys. 1988; 37: 785
  • 44 Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
  • 45 Laue T, Plagens A. Namen- und Schlagwort-Reaktionen der Organischen Chemie . Vieweg+Teubner Verlag; Wiesbaden: 2004
  • 46 Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Angew. Chem. Int. Ed. 2016; 55: 4156 ; Angew. Chem. 2016, 128, 4226
  • 47 Quasdorf KW, Overman LE. Nature 2014; 516: 181