Synthesis 2024; 56(11): 1677-1686
DOI: 10.1055/a-2133-1963
feature
New Trends in Organic Synthesis from Chinese Chemists

Synthesis of β-Hydroxyhydrophosphonic Acids from Inorganic Sodium Hypophosphite

Dang-Wei Qian
a   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. of China
,
Jin Yang
a   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. of China
,
Gang-Wei Wang
a   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. of China
,
Shang-Dong Yang
a   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. of China
b   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
› Author Affiliations
We are grateful to the NSFC (No. 22171119) and Gansu Province Science and Technology plan for major projects (No. 21ZD4WA021) and key research plan (No. 21YF5WA114) for financial support.


Abstract

An efficient approach to access β-hydroxyhydrophosphonic acid derivatives is reported by ring-opening reaction of readily available epoxides with green, inexpensive, and safe inorganic salt sodium hypophosphate as the phosphorus source in the presence of silver trifluoromethanesulfonate as the catalyst. The reaction is achieved under simple operation and exhibits excellent selectivity as well as good functional group compatibility.

Supporting Information



Publication History

Received: 12 June 2023

Accepted after revision: 19 July 2023

Accepted Manuscript online:
19 July 2023

Article published online:
13 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Kabak J, DeFilippe L, Engel R, Tropp B. J. Med. Chem. 1972; 15: 1074
    • 1b Clercq ED, Holý A, Rosenberg I, Sakuma T, Balzarini J, Maudgal PC. Nature 1986; 323: 464
    • 1c Arnold PL, Buffet JC, Blaudeck RP, Sujecki S, Blake AJ, Wilson C. Angew. Chem. Int. Ed. 2008; 47: 6033
    • 1d Zurwerra D, Gertsch J, Altmann KH. Org. Lett. 2010; 12: 2302
    • 1e Fujimori I, Mita T, Maki K, Shiro M, Sato A, Furusho S, Kanaia M, Shibasaki M. J. Am. Chem. Soc. 2006; 128: 16438
    • 1f Hartwich A, Zdzienicka N, Schols D, Andrei G, Snoeck R, Głowacka IE. Nucleosides Nucleotides 2020; 39: 542
    • 1g Cheviet T, Wein S, Bourchenin G, Lagacherie M, Périgaud C, Cerdan R, Peyrottes S. J. Med. Chem. 2020; 63: 8069
    • 1h Bold CP, Gut M, Schermann J, Agell DL, Gertsch J, DÍaz JF, Altmann KH. Chem. Eur. J. 2021; 27: 5936
    • 1i Hamidov M, Çakmakçi E, Kahraman MV. Mater. Chem. Phys. 2021; 267: 124636
    • 2a Froestl W, Mickel SJ, Sprecher G, Diel PJ, Hall RG, Maier L, Strub D, Melillo V, Baumann PA, Bernasconi R, Gentsch C, Hauser K, Jaekel J, Karlsson G, Klebs K, Maitre L, Marescaux C, Pozza MF, Schmutz M, Steinmann MW, Riezen H, Vassout A, Mondadori C, Olpe HR, Waldmeier PC, Bittiger H. J. Med. Chem. 1995; 38: 3313
    • 2b Kitamura M, Tokunaga M, Noyori R. J. Am. Chem. Soc. 1995; 117: 2931
    • 2c Gautier I, Vidal VR, Savignac P, Genêt JP. Tetrahedron Lett. 1996; 37: 7721
    • 2d Grison C, Petek S, Finance C, Coutro P. Carbohydr. Res. 2005; 340: 529
    • 2e Theil A, Hitce J, Retailleau P, Marinetti A. Eur. J. Org. Chem. 2006; 154
    • 2f Nesterov V, Kolodiazhnyi OI. Synlett 2007; 2400
    • 2g Nesterov VV, Kolodiazhnyi OI. Tetrahedron 2007; 63: 6720
    • 2h Głowacka IE, Piotrowska DG, Andrei G, Schols D, Snoeck R, Wróblewski AE. Monatsh. Chem. 2019; 150: 733
    • 2i Cicco L, Pascual AF, Condado AS, Carriedo GA, Perna FM, Capriati V, Soto AP, Álvarez JG. ChemSusChem 2020; 13: 4967
    • 3a Hanson RM. Chem. Rev. 1991; 91: 437
    • 3b Faiz S, Zahoor AF. Mol. Diversity 2016; 20: 969
    • 3c Nagarjun N, Concepcion P, Dhakshinamoorthy A. Mol. Catal. 2020; 482: 110628
    • 3d Lin ZY, Lan Y, Wang C. Org. Lett. 2020; 22: 3509
    • 4a Fagnou K, Lautens M. Org. Lett. 2000; 2: 2319
    • 4b Nair V, Rajan R, Mohanan K, Sheeba V. Tetrahedron Lett. 2003; 44: 4585
    • 4c Lee SH, Lee EY, Yoo DW, Hong SJ, Lee JH, Kwak H, Lee YM, Kim J, Kim C, Lee JK. New J. Chem. 2007; 31: 1579
    • 5a Crotti P, Favero L, Macchia F, Pineschi M. Tetrahedron Lett. 1994; 35: 7089
    • 5b Sawama Y, Shibata K, Sawama Y, Takubo M, Monguchi Y, Krause N, Sajiki H. Org. Lett. 2013; 15: 5282
    • 5c Liu XY, Song H, Zhai XF, Tung CH, Wang WG. Org. Biomol. Chem. 2020; 18: 1572
    • 6a Yadav JS, Reddy BV. S, Baishya G. Chem. Lett. 2002; 31: 906
    • 6b Li ZM, Zhou ZH, Li KY, Wang LX, Zhou QL, Tang CC. Tetrahedron Lett. 2002; 43: 7609
    • 7a Luo MP, Yuan RG, Liu XS, Yu LQ, Wei WG. Chem. Eur. J. 2016; 22: 9797
    • 7b Williams DB. G, Cullen A. J. Org. Chem. 2009; 74: 9509
    • 7c Haghayegh MS, Azizi N, Heidarzadeh F. ChemistrySelect 2020; 5. 14538
    • 7d Ahmad S, Yousaf M, Mansha A, Rasool N, Zahoor AF, Hafeez F, Rizvi SM. A. Synth. Commun. 2016; 46: 1397
    • 7e Torborg C, Hughes DD, Buckle R, Robinson MW. C, Bagley MC, Graham AE. Synth. Commun. 2008; 38: 205
    • 8a Mironov VF, Karaseva AN, Nizamov IS, Kedrov IS, Konovalov AI. Russ. J. Org. Chem. 2004; 40: 910
    • 8b Sardarian AR, Fard ZS. Synth. Commun. 2007; 37: 289
    • 8c Nogal AM. J, Cuadrado P, Sarmentero MA. Eur. J. Org. Chem. 2009; 850
    • 8d Begum F, Ikram M, Twamleya B, Baker RJ. RSC Adv. 2019; 9: 28936
    • 8e Zimmerman AN, Xu RS, Reynolds SC, Shipp CA, Marshall DJ, Wang G, Blank NF, Gibbons SK, Hughes RP, Glueck DS, Balaich GJ, Rheingold AL. J. Org. Chem. 2020; 85: 14516
    • 8f Cheviet T, Wein S, Bourchenin G, Lagacherie M, Perigaud C, Cerdan R, Peyrottes S. J. Med. Chem. 2020; 63: 8069
    • 8g Sobhani S, Vafaee A. Tetrahedron 2009; 65: 7691
    • 9a Depréle S, Montchamp JL. Org. Lett. 2004; 6: 3805
    • 9b Ortial S, Fisher HC, Montchamp JL. J. Org. Chem. 2013; 78: 6599
    • 9c Depréle S, Montchamp JL. J. Am. Chem. Soc. 2004; 124: 9386
    • 9d Fisher HC, Prost L, Montchamp JL. Eur. J. Org. Chem. 2013; 7973
    • 9e Altamirano KB, Caudray L, Deal EL, Montchamp JL. Org. Biomol. Chem. 2010; 8: 5541
    • 10a Depréle S, Montchamp JL. J. Org. Chem. 2001; 66: 6745
    • 10b Montchamp JL, Dumond YR. J. Am. Chem. Soc. 2001; 123: 510
    • 10c Bironneau SG, Depréle S, Sutor A, Montchamp JL. Org. Lett. 2005; 7: 5909
    • 10d Altamirano KB, Thomas IA, Montchamp JL. J. Org. Chem. 2008; 73: 2292
    • 10e Botez L, Jong GB, Slootweg JC, Deelman BJ. Eur. J. Org. Chem. 2017; 434
  • 11 Qian DW, Yang J, Wang GW, Yang SD. J. Org. Chem. 2023; 88: 3539
  • 12 Albouy D, Brun A, Munoz A, Moghadam GM. J. Org. Chem. 1998; 63: 7223
    • 13a Das B, Venkateswarlu K, Damodar K, Suneel K. J. Mol. Catal. A: Chem. 2007; 269: 17
    • 13b Hosseinzadeh R, Mohadjerani M, Mesgar S. J. Iran. Chem. Soc. 2019; 16: 583
  • 14 Minakata S, Okada Y, Oderaotoshi Y, Komatsu M. Org. Lett. 2005; 7: 3509