Synthesis 2023; 55(21): 3487-3501
DOI: 10.1055/a-2155-3423
special topic
C–H Bond Functionalization of Heterocycles

Zinc-Mediated C–H Metalations in Modern Organic Synthesis

Daria K. Wanic
a   Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK
,
Rebecca Melvin
a   Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK
,
Graeme Barker
a   Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK
b   Continuum Flow Lab, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK
› Author Affiliations


Abstract

C–H Deprotometalations have long occupied a key role in modern organic synthesis in both the research laboratory and pharmaceutical and fine chemical manufacture, thanks to readily accessible reagents and well-established procedures. Typically, organolithiums are the reagent of choice thanks to high reactivity and ease of use but these are incompatible with base- and nucleophile-sensitive functional groups. In comparison, organozinc base complexes offer a milder approach to deprotonative C–H functionalisations, and compatibility with a wide range of functionalities which would be problematic when using the alternative organolithium or organomagnesium reagents has now been demonstrated. Here, we review the current state of the art in zinc-mediated C–H metalations at substituted arenes, heteroarenes, and Csp3–H sites.

1 Introduction

2 Csp2–H Functionalisation Using Zinc Bases

2.1 Functionalised Arenes

2.2 Heterocycles

3 Csp3–H Functionalisation Using Zinc Bases

3.1 Zinc Enolate Formation: Traditional Approach

3.2 Zinc Enolate Formation via Zinc Bases

3.3 Non-Enolic Csp3–H Zincations

4 Conclusion



Publication History

Received: 10 July 2023

Accepted after revision: 16 August 2023

Accepted Manuscript online:
16 August 2023

Article published online:
15 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Knochel P, Jones P. Organozinc Reagents: A Practical Approach . Oxford University Press; Oxford: 1999
  • 2 Ocampo R, Dolbier WR. Tetrahedron 2004; 60: 9325
  • 3 Elschenbroich C, Salzer A. Organometallics. A Concise Introduction, 2nd ed. Wiley-VCH; Weinheim: 1992
  • 4 Simmons H, Smith R. J. Am. Chem. Soc. 1959; 81: 4256
  • 5 King A, Negishi E, Villani F, Silveira A. J. Org. Chem. 1978; 43: 358
  • 6 Ketels M, Ganiek MA, Weidmann N, Knochel P. Angew. Chem. Int. Ed. 2017; 56: 12770
  • 7 Kondo Y, Shilai M, Uchiyama M, Sakamoto T. J. Am. Chem. Soc. 1999; 121: 3539
  • 8 Clarke AJ, McNamara S, Methcohn O. Tetrahedron Lett. 1974; 15: 2373
  • 9 Wunderlich SH, Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7685
  • 10 Hendrick CE, Bitting KJ, Cho S, Wang Q. J. Am. Chem. Soc. 2017; 139: 11622
  • 11 Hlavinka ML, Hagadorn JR. Organometallics 2007; 26: 4105
  • 12 Micetich RG. Can. J. Chem. 1970; 48: 2006
  • 13 Wong JY. F, Tobin JM, Vilela F, Barker G. Chem. Eur. J. 2019; 25: 12439
    • 14a Neufeld R, Stalke D. Chem. Eur. J. 2016; 22: 12624
    • 14b Armstrong DR, García-Álvarez P, Kennedy AR, Mulvey RE, Parkinson JA. Angew. Chem. Int. Ed. 2010; 49: 3185
  • 15 Mosrin M, Knochel P. Org. Lett. 2009; 11: 1837
  • 16 Balkenhohl M, Jangra H, Makarov IS, Yang SM, Zipse H, Knochel P. Angew. Chem. Int. Ed. 2020; 59: 14992
  • 17 Hlavinka ML, Hagadorn JR. Tetrahedron Lett. 2006; 47: 5049
  • 18 Rees WS, Just O, Schumann H, Weimann R. Polyhedron 1998; 17: 1001
  • 19 Judge NR, Hevia E. Angew. Chem. Int. Ed. 2023; 62: e202303099
    • 20a Kennedy AR, Mulvey RE, Ramsay DL, Robertson SD. Dalton Trans. 2015; 44: 5875
    • 20b Clegg W, Crosbie E, Dale-Black SH, Hevia E, Honeyman GW, Kennedy AR, Mulvey RE, Ramsay DL, Robertson SD. Organometallics 2015; 34: 2580
    • 20c Balloch L, Garden JA, Kennedy AR, Mulvey RE, Rantanen T, Robertson SD, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 6934
    • 20d Garden JA, Kennedy AR, Mulvey RE, Robertson SD. Chem. Commun. 2012; 48: 5265
    • 20e Mastropierro P, Kennedy AR, Hevia E. Chem. Commun. 2022; 58: 5292
    • 20f Honeyman GW, Armstrong DR, Clegg W, Hevia E, Kennedy AR, McLellan R, Orr SA, Parkinson JA, Ramsay DL, Robertson SD, Towie S, Mulvey RE. Chem. Sci. 2020; 11: 6510
    • 20g Armstrong DR, Baillie SE, Blair VL, Chabloz NG, Diez J, Garcia-Alvarez J, Kennedy AR, Robertson SD, Hevia E. Chem. Sci. 2013; 4: 4259
    • 20h Baillie SE, Blair VL, Blakemore DC, Hay D, Kennedy AR, Pryde DC, Hevia E. Chem. Commun. 2012; 48: 1985
    • 20i Hevia E, Kennedy AR, McCall MD. Dalton Trans. 2012; 41: 98
    • 20j Clegg W, Conway B, Hevia E, McCall MD, Russo L, Mulvey RE. J. Am. Chem. Soc. 2009; 131: 2375
    • 20k Hevia E, Kennedy AR, Klett J, McCall MD. Chem. Commun. 2009; 3240
    • 20l Armstrong DR, García-Álvarez J, Graham DV, Honeyman GW, Hevia E, Kennedy AR, Mulvey RE. Chem. Eur. J. 2009; 15: 3800
    • 20m Francos J, Kennedy AR, O’Hara CT. Dalton Trans. 2016; 45: 6222
    • 20n Balloch L, Kennedy AR, Klett J, Mulvey RE, O’Hara CT. Chem. Commun. 2010; 46: 2319
    • 20o Mastropierro P, Livingstone Z, Robertson SD, Kennedy AR, Hevia E. Organometallics 2020; 39: 4273
    • 20p Armstrong DR, Balloch L, Hevia E, Kennedy AR, Mulvey RE, O'Hara CT, Robertson SD. Beilstein J. Org. Chem. 2011; 7: 1234
    • 20q Blair VL, Blakemore DC, Hay D, Hevia E, Pryde DC. Tetrahedron Lett. 2011; 52: 4590
    • 21a Robertson SD, Uzelac M, Mulvey RE. Chem. Rev. 2019; 119: 8332
    • 21b Borys AM, Dell’Aera M, Capriati V, Hevia E. Adv. Organomet. Chem. 2023; 80: 1
  • 22 Uchiyama M, Miyoshi T, Kajihara Y, Sakamoto T, Otani Y, Ohwada T, Kondo Y. J. Am. Chem. Soc. 2002; 124: 8514
  • 23 Knochel P, Monzon G. Synlett 2010; 304
  • 24 Yoshio H, Takaaki S, Hiroshi K. Chem. Lett. 1983; 12: 1211
  • 25 Bresser T, Mosrin M, Monzon G, Knochel P. J. Org. Chem. 2010; 75: 4686
  • 26 Bresser T, Monzon G, Mosrin M, Knochel P. Org. Process Res. Dev. 2010; 14: 1299
  • 27 Haag B, Mosrin M, Ila H, Malakhov V, Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9794
  • 28 Wunderlich SH, Rohbogner CJ, Unsinn A, Knochel P. Org. Process Res. Dev. 2010; 14: 339
  • 29 Walla P, Kappe CO. Chem. Commun. 2004; 564
  • 30 Wunderlich S, Knochel P. Org. Lett. 2008; 10: 4705
  • 31 Mosrin M, Monzon G, Bresser T, Knochel P. Chem. Commun. 2009; 5615
  • 32 Becker MR, Knochel P. Org. Lett. 2016; 18: 1462
  • 33 Imahori T, Uchiyama M, Sakamoto T, Kondo Y. Chem. Commun. 2001; 2450
  • 34 Effenberger F, Daub W. Chem. Ber. 1991; 124: 2119
  • 35 Connon SJ, Hegarty AF. J. Chem. Soc., Perkin Trans. 1 2000; 1245
  • 36 Taylor RD, MacCoss M, Lawson AD. J. Med. Chem. 2014; 57: 5845
  • 37 Kremsmair A, Sunagatullina AS, Bole LJ, Mastropierro P, Graßl S, Wilke HR, Godineau E, Hevia E, Knochel P. Angew. Chem. Int. Ed. 2022; 61: e202210491
  • 38 Shen K, Fu Y, Li J.-N, Liu L, Guo Q.-X. Tetrahedron 2007; 63: 1568
  • 39 Chevallier F, Mongin F. Chem. Soc. Rev. 2008; 37: 595
  • 40 Meirelles MA, de Toledo I, Thurow S, Barreiro G, Couñago RM, Pilli RA. J. Org. Chem. 2023; 88: 9475
  • 41 Allison BD, Deng X, Li L.-S, Liang J, Mani NS, Ren P, Sales ZS. Org. Process Res. Dev. 2022; 26: 2926
  • 42 Balkenhohl M, Greiner R, Makarov IS, Heinz B, Karaghiosoff K, Zipse H, Knochel P. Chem. Eur. J. 2017; 23: 13046
  • 43 Balkenhohl M, Jangra H, Lenz T, Ebeling M, Zipse H, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2019; 58: 9244
  • 44 Ziegler DS, Greiner R, Lumpe H, Kqiku L, Karaghiosoff K, Knochel P. Org. Lett. 2017; 19: 5760
  • 45 Balkenhohl M, Salgues B, Hirai T, Karaghiosoff K, Knochel P. Org. Lett. 2018; 20: 3114
  • 46 Schwarzer K, Tullmann CP, Grassl S, Gorski B, Brocklehurst CE, Knochel P. Org. Lett. 2020; 22: 1899
  • 47 Klier L, Ziegler DS, Rahimoff R, Mosrin M, Knochel P. Org. Process Res. Dev. 2017; 21: 660
  • 48 Meyers AI, Collington EW. J. Am. Chem. Soc. 1970; 92: 6676
  • 49 Haas D, Hofmayer MS, Bresser T, Knochel P. Chem. Commun. 2015; 51: 6415
  • 50 Xu Y, Dong G. Chem. Sci. 2018; 9: 1424
  • 51 Lombardo M, Trombini C. The Chemistry of Zinc Enolates . In The Chemistry of Organozinc Compounds . Rappoport Z, Marek I. John Wiley & Sons; Chichester: 2006. 797
  • 52 Diaper DG. M, Kuksis A. Chem. Rev. 1959; 59: 89
  • 53 Gilman H, Speeter M. J. Am. Chem. Soc. 1943; 65: 2255
  • 54 Takai K, Kakiuchi T, Utimoto K. J. Org. Chem. 1994; 59: 2671
  • 55 Gomes P, Gosmini C, Perichon J. Synthesis 2003; 1909
  • 56 Maruoka K, Hashimoto S, Kitagawa Y, Yamamoto H, Nozaki H. Bull. Chem. Soc. Jpn. 1980; 53: 3301
  • 57 Chattopadhyay A, Salaskar A. Synthesis 2000; 561
  • 58 Takahashi T, Nakao N, Koizumi T. Tetrahedron: Asymmetry 1997; 8: 3293
  • 59 Schmittel M, Ghorai MK. Synlett 2001; 1992
  • 60 Seebach D. Angew. Chem. Int. Ed. Engl. 1988; 27: 1624
  • 61 McDonald SL, Wang Q. Chem. Commun. 2014; 50: 2535
  • 62 St John-Campbell S, Sheppard TD. Adv. Synth. Catal. 2022; 364: 2674
  • 63 Dalziel ME, Chen P, Carrera DE, Zhang H, Gosselin F. Org. Lett. 2017; 19: 3446
    • 64a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
    • 64b Lovering F. MedChemComm 2013; 4: 515