Synthesis 2024; 56(05): 714-732
DOI: 10.1055/a-2181-9800
short review

Modern Macrolactonization Techniques

Max Van Hoof
a   Institut de Science et d’Ingénierie Supramoléculaires (ISIS), CNRS UMR7006, Université de Strasbourg, 67000 Strasbourg, France
,
Guillaume Force
b   Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, 91405 Orsay, France
,
David Lebœuf
a   Institut de Science et d’Ingénierie Supramoléculaires (ISIS), CNRS UMR7006, Université de Strasbourg, 67000 Strasbourg, France
› Author Affiliations
This work was supported by the Agence Nationale de la Recherche (ANR) (ANR-16-CE07-0022, funding for G.F.) and the Interdisciplinary Thematic Institutes (ITI-CSC) via IdEx Unistra (ANR-10-IDEX-0002, funding for M.V.H.) within the program Investissement d’Avenir. D.L. thanks the Centre National de la Recherche Scientifique (CNRS).


Abstract

The study of macrolactonization processes has been a steady endeavor for synthetic chemists to access macrocycles that are fundamental in the development of numerous high-added-value compounds, notably drugs and fragrances. This field of research is essential as macrolactonizations usually take place at the end of manifold syntheses and chemists need reliable, efficient, and versatile tools to avoid unpredictable results that would lead them to completely redesign their synthetic plan. Here, we highlight the recent methods reported to achieve macrolactonizations towards the formation of both macrolactones and macrodiolides, which feature either Lewis acids, transition metals or organic molecules as activating agents.

1 Introduction

2 Stoichiometric Carboxylic Acid Activation

3 Lewis Acid Catalyzed Reaction

4 C–H Activation

5 Ring-Expansion Strategy

6 Chemoenzymatic Synthesis

7 Other Macrolactonization Variants

8 Conclusion and Outlook



Publication History

Received: 22 August 2023

Accepted after revision: 26 September 2023

Accepted Manuscript online:
26 September 2023

Article published online:
31 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Driggers EM, Hale SP, Lee J, Terrett NK. Nat. Rev. Drug Discov. 2008; 7: 608
  • 2 Kirst HA. J. Antibiot. 2010; 63: 101
  • 3 Ohloff G, Pickenhagen W, Kraft P, Grau F. Scent and Chemistry: The Molecular World of Odors, 2nd ed. Wiley-VCH; Weinheim: 2022
  • 4 Delost MD, Smith DT, Anderson BJ, Njardarson JT. J. Med. Chem. 2018; 61: 10996
  • 5 Woodward RB, Logusch E, Nambiar KP, Sakan K, Ward DE, Au-Yeung BW, Balaram P, Browne LJ, Card PJ, Chen CH. J. Am. Chem. Soc. 1981; 103: 3215
  • 6 Mulzer J. Angew. Chem. Int. Ed. 1991; 30: 1452
  • 7 Evans DA, Black WC. J. Am. Chem. Soc. 1993; 115: 4497
  • 8 Seiple IB, Zhang Z, Jakubec P, Langlois-Mercier A, Wright PM, Hog DT, Yabu K, Allu SR, Fukuzaki T, Carlsen PN, Kitamura Y, Zhou X, Condakes ML, Szczypiński FT, Green WD, Myers AG. Nature 2016; 533: 338
  • 9 Hogan PC, Chen C.-L, Mulvihill KM, Lawrence JF, Moorhead E, Rickmeier J, Myers AG. J. Antibiot. 2018; 71: 318
  • 10 Marsault E, Peterson ML. J. Med. Chem. 2011; 54: 1961
  • 11 Yudin AK. Chem. Sci. 2015; 6: 30
  • 12 Parenty A, Moreau X, Niel G, Campagne J.-M. Chem. Rev. 2013; 113: PR1
  • 13 Tsakos M, Schaffert ES, Clement LL, Villadsen NL, Poulsen TB. Nat. Prod. Rep. 2015; 32: 605
  • 14 Li Y, Yin X, Dai M. Nat. Prod. Rep. 2017; 34: 1185
  • 15 Mortensen KT, Osberger TJ, King TA, Sore HF, Spring DR. Chem. Rev. 2019; 119: 10288
  • 16 Saridakis I, Kaiser D, Maulide N. ACS Cent. Sci. 2020; 6: 1869
  • 17 Rivera DG, Ojeda-Carralero GM, Reguera L, Van der Eycken EV. Chem. Soc. Rev. 2020; 49: 2039
  • 18 Fürstner A. Acc. Chem. Res. 2021; 54: 861
  • 19 Liu Z.-K, Gao Y, Hu X.-Q. Catal. Sci. Technol. 2021; 11: 6931
  • 20 Garnes-Portolés F, Leyva-Pérez A. ACS Catal. 2023; 13: 9415
  • 21 Inanaga J, Hirata K, Saeki H, Katsuki T, Yamaguchi M. Bull. Chem. Soc. Jpn. 1979; 52: 1989
  • 22 Shiina I, Kubota M, Ibuka R. Tetrahedron Lett. 2002; 43: 7535
  • 23 Shiina I, Kubota M, Oshiumi H, Hashizume M. J. Org. Chem. 2004; 69: 1822
  • 24 Corey EJ, Nicolaou KC. J. Am. Chem. Soc. 1974; 96: 5614
  • 25 Corey EJ, Brunelle DJ, Stork PJ. Tetrahedron Lett. 1976; 17: 3405
  • 26 Neises B, Steglich W. Angew. Chem. Int. Ed. 1978; 17: 522
  • 27 Boden EP, Keck GE. J. Org. Chem. 1985; 50: 2394
  • 28 Mukaiyama T, Usui M, Saigo K. Chem. Lett. 1976; 5: 49
  • 29 Kurihara T, Nakajima Y, Mitsunobu O. Tetrahedron Lett. 1976; 17: 2455
  • 30 Tian J, Gao W.-C, Zhou D.-M, Zhang C. Org. Lett. 2012; 14: 3020
  • 31 Trost BM, Chisholm JD. Org. Lett. 2002; 4: 3743
  • 32 Ruppin C, Dixneuf PH. Tetrahedron Lett. 1986; 27: 6323
  • 33 Wasserman HH, Wharton PS. J. Am. Chem. Soc. 1960; 82: 661
  • 34 Kita Y, Maeda H, Omori K, Okuno T, Tamura Y. Synlett 1993; 273
  • 35 Kita Y, Akai S. Chem. Rec. 2004; 4: 363
  • 36 Ohba Y, Takatsuji M, Nakahara K, Fujioka H, Kita Y. Chem. Eur. J. 2009; 15: 3526
  • 37 Kita Y, Akai S, Fujioka H, Kamitanaka T. J. Org. Chem. 2021; 86: 3683
  • 38 Thirupathi B, Jena BK. ChemistrySelect 2019; 4: 2908
  • 39 Tu Y, Zeng X, Wang H, Zhao J. Org. Lett. 2018; 20: 280
  • 40 Zeng X, Tu Y, Zhang Z, You C, Wu J, Ye Z, Zhao J. J. Org. Chem. 2019; 84: 4458
  • 41 Hu L, Xu S, Zhao Z, Yang Y, Peng Z, Yang M, Wang C, Zhao J. J. Am. Chem. Soc. 2016; 138: 13135
  • 42 Yang J, Wang C, Xu S, Zhao J. Angew. Chem. Int. Ed. 2019; 58: 1382
  • 43 Yang M, Wang X, Zhao J. ACS Catal. 2020; 10: 5230
  • 44 Zhao J, Shi J, Li Y. Org. Lett. 2021; 23: 7274
  • 45 Wencewicz TA, Oliver AG, Miller MJ. Org. Lett. 2012; 14: 4390
  • 46 Martí-Centelles V, Pandey MD, Burguete MI, Luis SV. Chem. Rev. 2015; 115: 8736
  • 47 Egli M, Sarkhel S. Acc. Chem. Res. 2007; 40: 197
  • 48 Force G, Perfetto A, Mayer RJ, Ciofini I, Lebœuf D. Angew. Chem. Int. Ed. 2021; 60: 19843
  • 49 Xiao W, Mo Y, Guo J, Su Z, Dong S, Feng X. Chem. Sci. 2021; 12: 2940
  • 50 de Léséleuc M, Collins SK. ACS Catal. 2015; 5: 1462
  • 51 de Léséleuc M, Collins SK. Chem. Commun. 2015; 51: 10471
  • 52 Oohashi Y, Fukumoto K, Mukaiyama T. Chem. Lett. 2005; 34: 710
  • 53 Sengupta S, Mehta G. Org. Biomol. Chem. 2020; 18: 1851
  • 54 Lumbroso A, Abermil N, Breit B. Chem. Sci. 2012; 3: 789
  • 55 Lumbroso A, Koschker P, Vautravers NR, Breit B. J. Am. Chem. Soc. 2011; 133: 2386
  • 56 Fraunhoffer KJ, Narayanasamy P, Sirois LE, White MC. J. Am. Chem. Soc. 2006; 128: 9032
  • 57 Gellrich U, Meißner A, Steffani A, Kähny M, Drexler H.-J, Heller D, Plattner DA, Breit B. J. Am. Chem. Soc. 2014; 136: 1097
  • 58 Haydl AM, Breit B. Chem. Eur. J. 2017; 23: 541
  • 59 Ganss S, Breit B. Angew. Chem. Int. Ed. 2016; 55: 9738
  • 60 Steib P, Breit B. Angew. Chem. Int. Ed. 2018; 57: 6572
  • 61 Steib P, Breit B. Chem. Eur. J. 2019; 25: 3532
  • 62 Chen Q.-H, Kingston DG. I. Nat. Prod. Rep. 2014; 31: 1202
  • 63 Lee K, Kim H, Hong J. Angew. Chem. Int. Ed. 2012; 51: 5735
  • 64 Rose CA, Zeitler K. Org. Lett. 2010; 12: 4552
  • 65 De Sarkar S, Grimme S, Studer A. J. Am. Chem. Soc. 2010; 132: 1190
  • 66 Sanchez CC, Keck GE. Org. Lett. 2005; 7: 3053
  • 67 Uenishi J, Iwamoto T, Tanaka J. Org. Lett. 2009; 11: 3262
  • 68 Zhang W.-W, Gao T.-T, Xu L.-J, Li B.-J. Org. Lett. 2018; 20: 6534
  • 69 Jamdade AB, Sutar DV, Gnanaprakasam B. Org. Lett. 2022; 24: 4394
  • 70 Donald JR, Unsworth WP. Chem. Eur. J. 2017; 23: 8780
  • 71 Stephens TC, Unsworth WP. Synlett 2020; 31: 133
  • 72 Clarke AM, Unsworth WP. Chem. Sci. 2020; 11: 2876
  • 73 Palate KY, Epton RG, Whitwood AC, Lynam JM, Unsworth WP. Org. Biomol. Chem. 2021; 19: 1404
  • 74 Yang Z, Swanson CR. B, Unsworth WP. Synlett 2023; 34: 1694
  • 75 Antonov VK, Shkrob AM, Shemyakin MM. Tetrahedron Lett. 1963; 4: 439
  • 76 Kitsiou C, Hindes JJ, I’Anson P, Jackson P, Wilson TC, Daly EK, Felstead HR, Hearnshaw P, Unsworth WP. Angew. Chem. Int. Ed. 2015; 54: 15794
  • 77 Stephens TC, Lawer A, French T, Unsworth WP. Chem. Eur. J. 2018; 24: 13947
  • 78 Lawer A, Epton RG, Stephens TC, Palate KY, Lodi M, Marotte E, Lamb KJ, Sangha JK, Lynam JM, Unsworth WP. Chem. Eur. J. 2020; 26: 12674
  • 79 Dworkin JH, Dehnert BW, Kwon O. Trends Chem. 2023; 5: 174
  • 80 Schreiber SL. J. Am. Chem. Soc. 1980; 102: 6163
  • 81 Suginome H, Yamada S. Tetrahedron Lett. 1985; 26: 3715
  • 82 Hernández R, Marrero JJ, Suárez E, Perales A. Tetrahedron Lett. 1988; 29: 5979
  • 83 Posner GH, Hatcher MA, Maio WA. Tetrahedron 2016; 72: 6025
  • 84 Du J, Yang X, Wang X, An Q, He X, Pan H, Zuo Z. Angew. Chem. Int. Ed. 2021; 60: 5370
  • 85 Tsurugi H, Mashima K. J. Am. Chem. Soc. 2021; 143: 7879
  • 86 Liu S, Ma P, Zhang L, Shen S, Miao H.-J, Liu L, Houk KN, Duan X.-H, Guo L.-N. Chem. Sci. 2023; 14: 5220
  • 87 Zhang Z, Chen P, Liu G. Chem. Soc. Rev. 2022; 51: 1640
  • 88 Bian K.-J, Li Y, Zhang K.-F, He Y, Wu T.-R, Wang C.-Y, Wang X.-S. Chem. Sci. 2020; 11: 10437
  • 89 Gao D.-W, Jamieson CS, Wang G, Yan Y, Zhou J, Houk KN, Tang Y. J. Am. Chem. Soc. 2021; 143: 80
  • 90 Gagnon C, Godin É, Minozzi C, Sosoe J, Pochet C, Collins SK. Science 2020; 367: 917
  • 91 Verho O, Bäckvall J.-E. J. Am. Chem. Soc. 2015; 137: 3996
  • 92 Karmee SK, Niemeijer B, Casiraghi L, Mlambo B, Lapkin A, Greiner L. Biocatal. Biotransform. 2014; 32: 125
  • 93 Yoshimi Y, Masuda M, Mizunashi T, Nishikawa K, Maeda K, Koshida N, Itou T, Morita T, Hatanaka M. Org. Lett. 2009; 11: 4652
  • 94 Nishikawa K, Yoshimi Y, Maeda K, Morita T, Takahashi I, Itou T, Inagaki S, Hatanaka M. J. Org. Chem. 2013; 78: 582
  • 95 Yoshimi Y, Itou T, Hatanaka M. Chem. Commun. 2007; 5244
  • 96 Bai Y, Shen X, Li Y, Dai M. J. Am. Chem. Soc. 2016; 138: 10838
  • 97 Fu W, Wang L, Yang Z, Shen J.-S, Tang F, Zhang J, Cui X. Chem. Commun. 2020; 56: 960
  • 98 Li Q.-Z, Liu Y, Li M.-Z, Zhang X, Qi T, Li J.-L. Org. Biomol. Chem. 2020; 18: 3638
  • 99 Xiong Q, Xiao L, Dong X.-Q, Wang C.-J. Org. Lett. 2022; 24: 2579
  • 100 Pourvali A, Cochrane JR, Hutton CA. Chem. Commun. 2014; 50: 15963
  • 101 Thombare VJ, Hutton CA. Angew. Chem. Int. Ed. 2019; 58: 4998
  • 102 Shabani S, Hutton CA. Chem. Commun. 2021; 57: 2081