Synlett
DOI: 10.1055/a-2185-0581
cluster
Thieme Chemistry Journals Awardees 2023

Chromium-Promoted Dearomative (Deutero)Hydrocyanoalkylation of (Hetero)Arenes Using Simple Alkylnitriles

Wei-Long Zeng
,
Xu Jiang
,
Wei Li
This work is supported by the National Natural Science Foundation of China (22271251) and the Fundamental Research Funds for the Central Universities (226-2023-00016, 226-2023-00115, and 226-2022-00224).


Abstract

Herein, a general strategy for the regioselective dearomative 1,2-hydrocyanoalkylation of chromium-bound (hetero)arenes with simple alkylnitriles as pronucleophiles was disclosed, providing rapid access to 1,3-cyclohexadienes possessing useful alkylnitrile groups. The versatility of this methodology further enabled a selective dearomative deuteration reaction. Finally, synthetic applications of the method in the formal synthesis of natural products, including erysotramidine, demethoxyerythratidinone, and morphine, were demonstrated.

Supporting Information



Publication History

Received: 21 August 2023

Accepted after revision: 02 October 2023

Accepted Manuscript online:
02 October 2023

Article published online:
06 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a The Chemistry of the Cyano Group . Rappoport Z. Wiley; London: 1970
    • 1b Fleming FF. Nat. Prod. Rep. 1999; 16: 597
    • 1c Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902

      For recent works, see:
    • 3a Kawato Y, Kumagai N, Shibasaki M. Chem. Commun. 2013; 49: 11227
    • 3b Sureshkumar D, Ganesh V, Kumagai N, Shibasaki M. Chem. Eur. J. 2014; 20: 15723
    • 3c Lin S, Kawato Y, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2015; 54: 5183
    • 3d Tamura K, Kumagai N, Shibasaki M. Eur. J. Org. Chem. 2015; 3026
    • 3e Lin S, Kumagai N, Shibasaki M. Org. Biomol. Chem. 2016; 14: 9725
    • 3f Zhang H, Zhu C. Org. Chem. Front. 2017; 4: 1272
    • 3g Balaji PV, Brewitz L, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2019; 58: 2644
    • 3h Saito A, Kumagai N, Shibasaki M. Org. Lett. 2019; 21: 8187
    • 3i Tak RK, Noda H, Shibasaki M. Asian J. Org. Chem. 2020; 9: 57
    • 3j Balaji PV, Li Z, Saito A, Kumagai N, Shibasaki M. Chem. Eur. J. 2020; 26: 15524
    • 3k Saito A, Adachi S, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2021; 60: 8739
    • 3l Jin S, Chen F, Qian P, Cheng J. Org. Biomol. Chem. 2021; 19: 2416

      For selected reviews on arene dearomatizations, see:
    • 4a Asymmetric Dearomatization Reactions . You S.-L. Wiley-VCH; Weinheim: 2016
    • 4b Wu W.-T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570
    • 4c Wertjes WC, Southgate EH, Sarlah D. Chem. Soc. Rev. 2018; 47: 7996
    • 4d Wiesenfeldt MP, Nairoukh Z, Dalton T, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 10460
    • 4e Huck CJ, Sarlah D. Chem 2020; 6: 1589

      For selected examples using (η6-arene)Cr(CO)3 reagents, see:
    • 5a Rosillo M, Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2007; 36: 1589
    • 5b McGrew GI, Temaismithi J, Carroll PJ, Walsh PJ. Angew. Chem. Int. Ed. 2010; 49: 5541
    • 5c Zhang J, Stanciu C, Wang B, Hussain MM, Da C.-S, Carroll PJ, Dreher SD, Walsh PJ. J. Am. Chem. Soc. 2011; 133: 20552
    • 5d McGrew GI, Stanciu C, Zhang J, Carroll JP, Dreher SD, Walsh PJ. Angew. Chem. Int. Ed. 2012; 51: 11510
    • 5e Mao J, Zhang J, Jiang H, Bellomo A, Zhang M, Gao Z, Dreher SD, Walsh PJ. Angew. Chem. Int. Ed. 2016; 55: 2526
    • 5f Shirakawa S, Yamamoto K, Maruoka K. Angew. Chem. Int. Ed. 2015; 54: 838
    • 5g Kubota N, Segawa Y, Itami K. J. Am. Chem. Soc. 2015; 137: 1356
    • 5h Bigler R, Aggarwal VK. Angew. Chem. Int. Ed. 2018; 57: 1082
    • 5i Ricci P, Krämer K, Cambeiro XC, Larrosa I. J. Am. Chem. Soc. 2013; 135: 13258
    • 5j Ricci P, Krämer K, Larrosa I. J. Am. Chem. Soc. 2014; 136: 18082
    • 5k Whitaker D, Burés J, Larrosa I. J. Am. Chem. Soc. 2016; 138: 8384
    • 5l Panigrahi A, Whitaker D, Vitorica-Yrezabal IJ, Larrosa I. ACS Catal. 2020; 10: 2100
  • 6 Pape AR, Kaliappan KP, Kündig EP. Chem. Rev. 2000; 100: 2917
    • 7a Semmelhack MF, Hall HT. Jr, Yoshifuji M. J. Am. Chem. Soc. 1976; 98: 6387
    • 7b Semmelhack MF, Harrison JJ, Thebtaranonth Y. J. Org. Chem. 1979; 44: 3275
    • 7c Semmelhack MF, Hall HT. Jr, Farina R, Yoshifuji M, Clark G, Bargar T, Hirotsu K, Clardy J. J. Am. Chem. Soc. 1979; 101: 3535
  • 8 Schmalz H.-GB, Gotov B, Böttcher A. Top. Organomet. Chem. 2004; 7: 157
    • 9a Wang M.-Y, Wu C.-J, Zeng W.-L, Jiang X, Li W. Angew. Chem. Int. Ed. 2022; 61: e202210312
    • 9b Qiu J.-Y, Zeng W.-L, Xie H, Wang M.-Y, Li W. Angew. Chem. Int. Ed. 2023; 62: e202218961
    • 9c Li Z.-J, Wang M.-Y, Li C.-Q, Zeng W.-L, Li W. Chem. Eur. J. 2023; 29: e202300776
    • 10a Gant TG. J. Med. Chem. 2014; 57: 3595
    • 10b Dean M, Sung VW. Drug Des., Dev. Ther. 2018; 12: 313
    • 10c Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Chem. Rev. 2022; 122: 6634
  • 11 Smith JA, Wilson KB, Sonstrom RE, Kelleher PJ, Welch KD, Pert EK, Westendorff KS, Dickie DA, Wang X, Pate BH, Harman WD. Nature 2020; 581: 288
    • 12a Gao S, Tu YQ, Hu X, Wang S, Hua R, Jiang Y, Zhao Y, Fan X, Zhang S. Org. Lett. 2006; 8: 2373
    • 12b Liang J, Chen J, Liu J, Li L, Zhang H. Chem. Commun. 2010; 46: 3666
  • 13 Li Q, Zhang H. Chin. J. Org. Chem. 2017; 37: 1629
  • 14 Ichiki M, Tanimoto H, Miwa S, Saito R, Sato T, Chida N. Chem. Eur. J. 2013; 19: 264
  • 15 Typical Procedure for the Dearomative Hydrocyanoalkylation Under N2 atmosphere, t-BuOK (0.90 mmol, 3.0 equiv.) was added to the solution of (η6-1,4-dimethoxybenzene)Cr(CO)3 (0.30 mmol, 1.0 equiv.) in CH3CN (1.5 mL) and THF (1.5 mL) at –45 °C. After stirring for 4 h, the reaction was quenched with CF3CO2H (1.5 mmol, 5.0 equiv.) and stirred for another 1 h. The mixture was concentrated and purified by preparative TLC using PE/EtOAc (10: 1) as the eluent to give a pale yellow liquid 8; 48.3 mg, 90% yield. 1H NMR (500 MHz, CDCl3, connectivities were confirmed by gCOSY experiments): δ = 4.93 (d, J = 6.5 Hz, 1 H), 4.85 (dd, J = 7.0, 1.5 Hz, 1 H), 3.55 (d, J = 2.0 Hz, 6 H), 2.74–2.68 (m, 1 H), 2.68–2.63 (m, 1 H), 2.52 (dd, J = 16.5, 5.0 Hz, 1 H), 2.46 (dd, J = 16.5, 8.5 Hz, 1 H), 2.34–2.25 (m, 1 H). 13C NMR (126 MHz, CDCl3): δ = 151.7, 150.4, 118.7, 92.8, 90.8, 55.1, 54.9, 35.4, 32.5, 19.2. HRMS (APCI): m/z calcd [C10H13NO2 + H]+: 180.1019; found: 180.1018.