Synlett
DOI: 10.1055/a-2197-1909
account
Special Issue Thieme Chemistry Journals Awardees 2023

Ketone-Derived Pro-aromatic Reagents for Radical Group Transfer Reactions and Deconstructive Functionalizations

a   Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC)
,
b   Department of Chemistry, College of Science and Mathematics, Mindanao State University – Iligan Institute of Technology, Iligan City 9200, Philippines
,
a   Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC)
c   Green Hydrogen Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC)
d   Department of Applied and Medicinal Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan (ROC)
› Author Affiliations
This work was supported by the Young Scholar Fellowship Program of the Ministry of Science and Technology (MOST 111-2636-M-110-011) and the Yushan Young Scholar Program of the Ministry of Education of Taiwan (H.H.L.).


Dedicated to Prof. Dr. Evelyn Creencia on the occasion of her retirement from the Dept. of Chemistry, Mindanao State University – Iligan Institute of Technology.

Abstract

The recent prominence of ketones as handles for sp3-rich radicals has expanded the paradigm of synthetic utility of ketones, putting the ubiquitous functional group once again into the spotlight in recent years. One emerging strategy arose through ketone-derived pro-aromatic reagents in the form of dihydrobenzothiazoline (BTZ), dihydroquinazolinone (DHQZ), dihydropyrazole (DHP), and dihydro-1,2,4-triazole (DHT) as key intermediates for aromaticity-promoted C–C bond homolytic fission. The formed sp3-radicals could then participate in various radical functionalizations, including alkylations, arylations, olefination, alkynylation, silylations, amination, thiolation, and deuteration, among others, either in photocatalytic, thermal, or oxidative conditions. In this review, we highlight the implications and recent advances in using these pro-aromatic reagents in radical group transfer reactions and deconstructive functionalization.

1 Introduction

2 Aromatization-Driven C–C Bond Scission of Ketones

3 Photochemical Reactions of Ketone-Derived Pro-aromatic Reagents

4 Non-photochemical Reactions of Ketone-Derived Pro-aromatic Reagents

5 Conclusion and Future Outlook



Publication History

Received: 22 September 2023

Accepted after revision: 23 October 2023

Accepted Manuscript online:
24 October 2023

Article published online:
27 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For representative reviews on C–C bond formations via transition-metal catalysis, see:
    • 1a Fagnou K, Lautens M. Chem. Rev. 2003; 103: 169
    • 1b Hess W, Treutwein J, Hilt G. Synthesis 2008; 3537
    • 1c Shinokubo H, Oshima K. Eur. J. Org. Chem. 2004; 2081
    • 1d Nair V, Ros S, Jayan CN, Pillai BS. Tetrahedron 2004; 60: 1959

    • For C–C bond formations via organocatalysis, see:
    • 1e Nair V, Vellalath S, Babu BP. Chem. Soc. Rev. 2008; 37: 2691
    • 1f Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
    • 1g Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
    • 1h Mahrwald R. Drug Discovery Today: Technol. 2013; 10: e29
    • 1i Evans CS, Davis LO. Molecules 2018; 23: 33
    • 1j Scheffler U, Mahrwald R. Chem. Eur. J. 2013; 19: 14346
    • 1k Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390

    • For C–C bond formations via biocatalysis, see:
    • 1l Schmidt NG, Eger E, Kroutil W. ACS Catal. 2016; 6: 4286
    • 1m Resch V, Schrittwieser JH, Siirola E, Kroutil W. Curr. Opin. Biotechnol. 2011; 22: 793
    • 1n Miao Y, Rahimi M, Geertsema EM, Poelarends GJ. Curr. Opin. Chem. Biol. 2015; 25: 115
    • 2a Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
    • 2b Knappke CE. I, Jacobi Von Wangelin A. Chem. Soc. Rev. 2011; 40: 4948
    • 2c Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 2d Devendar P, Qu R.-Y, Kang W.-M, He B, Yang G.-F. J. Agric. Food Chem. 2018; 66: 8914
    • 3a Schuster M, Blechert S. Angew. Chem., Int. Ed. Engl. 1997; 36: 2036
    • 3b Grubbs RH, Chang S. Tetrahedron 1998; 54: 4413
    • 3c Fürstner A. Angew. Chem. Int. Ed. 2000; 39: 3012
    • 3d Mol JC. J. Mol. Catal. A: Chem. 2004; 213: 39
    • 3e Clavier H, Grela K, Kirschning A, Mauduit M, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 6786
    • 3f Hoveyda AH, Zhugralin AR. Nature 2007; 450: 243
    • 3g Ogba OM, Warner NC, O’Leary DJ, Grubbs RH. Chem. Soc. Rev. 2018; 47: 4510
    • 3h Albright H, Davis AJ, Gomez-Lopez JL, Vonesh HL, Quach PK, Lambert TH, Schindler CS. Chem. Rev. 2021; 121: 9359
    • 4a Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 4b Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 4c Ritleng V, Sirlin C, Pfeffer M. Chem. Rev. 2002; 102: 1731
    • 4d Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 4e Kakiuchi F, Kochi T. Synthesis 2008; 3013
    • 4f Jia C, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
    • 4g Guari Y, Sabo-Etienne S, Chaudret B. Eur. J. Inorg. Chem. 1999; 1047
    • 4h Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 4i Chen DY.-K, Youn SW. Chem. Eur. J. 2012; 18: 9452
    • 4j Basu D, Kumar S, Sudhir SV, Bandichhor R. J. Chem. Sci. 2018; 130: 71
    • 5a Giese B. Angew. Chem., Int. Ed. Engl. 1983; 22: 753
    • 5b Iqbal J, Bhatia B, Nayyar NK. Chem. Rev. 1994; 94: 519
    • 5c Dalko PI. Tetrahedron 1995; 51: 7579
    • 5d Rowlands GJ. Tetrahedron 2009; 65: 8603
    • 5e Rowlands GJ. Tetrahedron 2010; 66: 1593
    • 5f Wallentin C.-J, Nguyen JD, Stephenson CR. J. CHIMIA 2012; 66: 394
    • 5g Chan TL, Wu Y, Choy PY, Kwong FY. A. Chem. Eur. J. 2013; 19: 15802
    • 5h Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 6a Kita Y, Matsugi M. Radical Initiators . In Radicals in Organic Synthesis . Renaud P, Sibi MP. Wiley; Weinheim: 2001: 1-10
    • 6b Gilbert BC, Parsons AF. J. Chem. Soc., Perkin Trans. 2 2002; 367
    • 7a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2010; 40: 102
    • 7b Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 7c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 7d Liu Q, Wu L.-Z. Natl. Sci. Rev. 2017; 4: 359
    • 7e Michelin C, Hoffmann N. ACS Catal. 2018; 8: 12046
    • 7f McAtee RC, McClain EJ, Stephenson CR. J. Trends Chem. 2019; 1: 111
    • 7g Glaser F, Wenger OS. Coord. Chem. Rev. 2020; 405: 213129
    • 7h Holmberg-Douglas N, Nicewicz DA. Chem. Rev. 2022; 122: 1925
    • 7i Bell JD, Murphy JA. Chem. Soc. Rev. 2021; 50: 9540
    • 8a Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 8b Poremba KE, Dibrell SE, Reisman SE. ACS Catal. 2020; 10: 8237
    • 8c Kranthikumar R. Organometallics 2022; 41: 667
    • 8d Franke MC, Weix DJ. Isr. J. Chem. 2023; e202300089
    • 8e Hsu C.-M, Lin H.-B, Hou X.-Z, Tapales RV. P. P, Shih C.-K, Miñoza S, Tsai Y.-S, Tsai Z.-N, Chan C.-L, Liao H.-H. J. Am. Chem. Soc. 2023; 145: 19049
    • 9a Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 52
    • 9b Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152
    • 9c Kojima M, Matsunaga S. Trends Chem. 2020; 2: 410
    • 9d Lu F.-D, He G.-F, Lu L.-Q, Xiao W.-J. Green Chem. 2021; 23: 5379
    • 9e Zheng S, Hu Y, Yuan W. Synthesis 2021; 53: 1719
    • 9f Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
    • 9g Li J, Huang C.-Y, Li C.-J. Chem 2022; 8: 2419
    • 9h Zhang J, Rueping M. Chem. Soc. Rev. 2023; 52: 4099
    • 11a Pang Y, Moser D, Cornella J. Synthesis 2020; 52: 489
    • 11b Rössler SL, Jelier BJ, Magnier E, Dagousset G, Carreira EM, Togni A. Angew. Chem. Int. Ed. 2020; 59: 9264
    • 11c He F.-S, Ye S, Wu J. ACS Catal. 2019; 9: 8943
    • 12a Lackner GL, Quasdorf KW, Overman LE. J. Am. Chem. Soc. 2013; 135: 15342
    • 12b Lackner GL, Quasdorf KW, Pratsch G, Overman LE. J. Org. Chem. 2015; 80: 6012
    • 12c Nawrat CC, Jamison CR, Slutskyy Y, MacMillan DW. C, Overman LE. J. Am. Chem. Soc. 2015; 137: 11270
    • 12d Zhang X, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 13862
    • 12e Pitre SP, Muuronen M, Fishman DA, Overman LE. ACS Catal. 2019; 9: 3413
    • 12f Ye Y, Chen H, Sessler JL, Gong H. J. Am. Chem. Soc. 2019; 141: 820
    • 13a Zubkov MO, Kosobokov MD, Levin VV, Kokorekin VA, Korlyukov AA, Hu J, Dilman AD. Chem. Sci. 2020; 11: 737
    • 13b Panferova LI, Dilman AD. Org. Lett. 2021; 23: 3919
    • 13c Hsu C.-M, Lee S.-C, Tsai H.-E, Tsao Y.-T, Chan C.-L, Miñoza S, Tsai Z.-N, Li L.-Y, Liao H.-H. J. Org. Chem. 2022; 87: 3799
    • 13d Liao H.-H, Lee S.-C, Kao H, Hsu Y.-L, Hsu C.-M, Tsao Y.-T, Miñoza S, Li L.-Y, Tsai Z.-N, Chang K.-C, Cheng C.-K, Chan C.-L, Chien Y.-S, Chiu C.-c. Cell. Rep. Phys. Sci. 2022; 3: 101010
    • 13e Chan C.-L, Lee S.-C, Liao H.-H. STAR Protoc. 2023; 4: 102043
    • 14a Walton JC, Studer A. Acc. Chem. Res. 2005; 38: 794
    • 14b Bhunia A, Studer A. Chem 2021; 7: 2060
  • 15 Pollak N, Dölle C, Ziegler M. Biochem. J. 2007; 402: 205
    • 16a Chen Q.-A, Chen M.-W, Yu C.-B, Shi L, Wang D.-S, Yang Y, Zhou Y.-G. J. Am. Chem. Soc. 2011; 133: 16432
    • 16b Zheng C, You S.-L. Chem. Soc. Rev. 2012; 41: 2498
    • 16c Guo Y.-Y, Tian Z.-H, Han Y.-C, Ma D, Shao T, Jiang Z. Chem. Eur. J. 2023; 29: e202301180
    • 17a Nakajima K, Nojima S, Nishibayashi Y. Angew. Chem. Int. Ed. 2016; 55: 14106
    • 17b Dumoulin A, Matsui JK, Gutiérrez-Bonet Á, Molander GA. Angew. Chem. Int. Ed. 2018; 57: 6614
    • 17c Phelan JP, Lang SB, Sim J, Berritt S, Peat AJ, Billings K, Fan L, Molander GA. J. Am. Chem. Soc. 2019; 141: 3723
    • 17d Alandini N, Buzzetti L, Favi G, Schulte T, Candish L, Collins KD, Melchiorre P. Angew. Chem. Int. Ed. 2020; 59: 5248
    • 19a Chen S.-C, Zhu Q, Cao Y, Li C, Guo Y, Kong L, Che J, Guo Z, Chen H, Zhang N, Fang X, Lu J.-T, Luo T. J. Am. Chem. Soc. 2021; 143: 14046
    • 19b Chen S.-C, Zhu Q, Chen H, Chen Z, Luo T. Chem. Eur. J. 2023; 29: e202203425
    • 20a Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
    • 20b Dermenci A, Coe JW, Dong G. Org. Chem. Front. 2014; 1: 567
    • 20c Murakami M, Ishida N. J. Am. Chem. Soc. 2016; 138: 13759
    • 20d Chen P, Billett BA, Tsukamoto T, Dong G. ACS Catal. 2017; 7: 1340
    • 20e Fumagalli G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
    • 20f Guo L, Rueping M. Chem. Eur. J. 2018; 24: 7794
    • 20g Wu X, Zhu C. Chin. J. Chem. 2018; cjoc.201800455
    • 20h Morcillo SP. Angew. Chem. Int. Ed. 2019; 58: 14044
    • 20i Sivaguru P, Wang Z, Zanoni G, Bi X. Chem. Soc. Rev. 2019; 48: 2615
    • 20j Deng L, Dong G. Trends Chem. 2020; 2: 183
    • 21a Li L, Guo S, Wang Q, Zhu J. Org. Lett. 2019; 21: 5462
    • 21b Uchikura T, Moriyama K, Toda M, Mouri T, Ibáñez I, Akiyama T. Chem. Commun. 2019; 55: 11171
    • 22a Henseler A, Kato M, Mori K, Akiyama T. Angew. Chem. Int. Ed. 2011; 50: 8180
    • 22b Tarantino KT, Liu P, Knowles RR. J. Am. Chem. Soc. 2013; 135: 10022
    • 22c Chen J, Huang W, Li Y, Cheng X. Adv. Synth. Catal. 2018; 360: 1466
  • 23 Li G, Chen R, Wu L, Fu Q, Zhang X, Tang Z. Angew. Chem. Int. Ed. 2013; 52: 8432
  • 24 Li L, Fang L, Wu W, Zhu J. Org. Lett. 2020; 22: 5401
  • 25 Lee S.-C, Li L.-Y, Tsai Z.-N, Lee Y.-H, Tsao Y.-T, Huang P.-G, Cheng C.-K, Lin H.-B, Chen T.-W, Yang C.-H, Chiu C.-C, Liao H.-H. Org. Lett. 2022; 24: 85
    • 26a Xu Y, Qi X, Zheng P, Berti CC, Liu P, Dong G. Nature 2019; 567: 373
    • 26b Zhou X, Xu Y, Dong G. Nat. Catal. 2021; 4: 703
    • 26c Zhou X, Xu Y, Dong G. J. Am. Chem. Soc. 2021; 143: 20042
    • 27a Zhou X, Pyle D, Zhang Z, Dong G. Angew. Chem. Int. Ed. 2023; 62: e202213691
    • 27b Zhou X, Yu T, Dong G. J. Am. Chem. Soc. 2022; 144: 9570
  • 28 Lv X.-Y, Abrams R, Martin R. Nat. Commun. 2022; 13: 2394
  • 29 Cong F, Mega RS, Chen J, Day CS, Martin R. Angew. Chem. Int. Ed. 2023; 62: e202214633
  • 30 Uchikura T, Nakamura H, Sakai H, Akiyama T. Chem. Eur. J. 2023; e202301090
  • 31 Yedase GS, Arif M, Kuniyil R, Yatham VR. Org. Lett. 2023; 25: 6200
  • 32 Mondal PP, Pal A, Das S, Vijayan SM, Nair AV, Ojha S, Sahoo B. Synlett 2023; 34: 1241
  • 33 Mondal PP, Das S, Venugopalan S, Krishnan M, Sahoo B. Org. Lett. 2023; 25: 1441
  • 34 Bag S, Ojha S, Venugopalan S, Sahoo B. J. Org. Chem. 2023; 88: 12121
  • 35 Wu H, Chen S, Xiao D, Li F, Zhou K, Yin X, Liu C, He X, Shang Y. Org. Lett. 2023; 25: 1166
  • 36 Uchikura T, Toda M, Mouri T, Fujii T, Moriyama K, Ibáñez I, Akiyama T. J. Org. Chem. 2020; 85: 12715
  • 37 Lv X, Abrams R, Martin R. Angew. Chem. Int. Ed. 2023; 62: e202217386
  • 38 Zhang Z, Zhu Q, Pyle D, Zhou X, Dong G. J. Am. Chem. Soc. 2023; 145: 21096