Synlett
DOI: 10.1055/a-2272-8045
letter

Photoinduced Direct Carbamoylation of Ethers with Isocyanates towards the Synthesis of α-Amide-Substituted Ether Derivatives

Ming Qi
,
Jing-Han Li
,
Xiao-Jie Lu
,
An-Wu Xu
The authors gratefully acknowledge the special funding support from the National Natural Science Foundation of China (22271266), the USTC–Yanchang Petroleum New Energy Joint Research Project (2022ZKD-02), the Fundamental Research Funds for the Central Universities (YD2340002001) and Students' Innovation and Entrepreneurship Foundation of the USTC (USTC, CY2022S01).


Abstract

Photoinduced carbamoylation of ethers using isocyanates as amide sources was accomplished under mild and environmentally friendly reaction conditions. A series of isocyanates were tolerated in this protocol to construct α-amide-substituted ether derivatives with desired yields. The method featured broad substrate scope and good functional group tolerance, which could play an important role in the construction of biological molecules with ethers.

Supporting Information



Publication History

Received: 04 December 2023

Accepted after revision: 20 February 2024

Accepted Manuscript online:
20 February 2024

Article published online:
11 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Gusev DG. ACS Catal. 2017; 7: 6656
  • 2 El-Faham A, Albericio F. Chem. Rev. 2011; 111: 6557
  • 3 Serrano E, Martin R. Eur. J. Org. Chem. 2018; 3051
  • 4 Pattabiraman VR, Bode JW. Nature 2011; 480: 471
  • 5 Tolba AH, Krupička M, Chudoba J, Cibulka R. Org. Lett. 2021; 23: 6825
  • 6 Ren J.-W, Tong M.-N, Zhao Y.-F, Ni F. Org. Lett. 2021; 23: 7497
  • 7 Lanigan RM, Sheppard TD. Eur. J. Org. Chem. 2013; 7453
  • 8 Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
  • 9 Sauermann N, Meyer TH, Qiu Y, Ackermann L. ACS Catal. 2018; 8: 7086
  • 10 Bellotti P, Huang H.-M, Faber T, Glorius F. Chem. Rev. 2023; 123: 4237
  • 11 Golden DL, Suh S.-E, Stahl SS. Nat. Rev. Chem. 2022; 6: 405
  • 12 Niu B, Sachidanandan K, Cooke MV, Casey TE, Laulhé S. Org. Lett. 2022; 24: 4524
  • 13 Zheng Y.-W, Narobe R, Donabauer K, Yakubov S, König B. ACS Catal. 2020; 10: 8582
  • 14 Teng F, Sun S, Jiang Y, Yu J.-T, Cheng J. Chem. Commun. 2015; 51: 5902
  • 15 Ni H, Li C, Shi X, Hu X, Mao H. J. Org. Chem. 2022; 87: 9797
  • 16 Huang Q, Dong K, Bai W, Yi D, Ji J.-X, Wei W. Org. Lett. 2019; 21: 3332
  • 17 Zeng H.-T, Huang J.-M. Org. Lett. 2015; 17: 4276
  • 18 Li Y, Zhu F, Wang Z, Wu X.-F. ACS Catal. 2016; 6: 5561
  • 19 Li Y, Dong K, Zhu F, Wang Z, Wu XF. Angew. Chem. Int. Ed. 2016; 55: 7227
  • 20 Wang LC, Chen B, Wu XF. Angew. Chem. Int. Ed. 2022; 61: e2022037
  • 21 Liu H, Laurenczy G, Yan N, Dyson PJ. Chem. Commun. 2014; 50: 341
  • 22 Lu L, Cheng D, Zhan Y, Shi R, Chiang C.-W, Lei A. Chem. Commun. 2017; 53: 6852
  • 23 Veatch AM, Alexanian EJ. Chem. Sci. 2020; 11: 7210
  • 24 Han Z, Chaowei D, Lice L, Hongfei M, Hongzhong B, Yufeng L. Tetrahedron 2018; 74: 3712
  • 25 Yuan H, Liu Z, Shen Y, Zhao H, Li C, Jia X, Li J. Adv. Synth. Catal. 2019; 361: 2009
  • 26 Liu Y, Xu J, Fu X, Xu M, Li X, Cheng D, Xu X. Asian J. Org. Chem. 2023; 12: e202200618
  • 27 Oliveira PH. R, Tordato ÉA, Vélez JA. C, Carneiro PS, Paixão MW. J. Org. Chem. 2022; 88: 6407
  • 28 Singh T, Upreti GC, Arora S, Chauhan H, Singh A. J. Org. Chem. 2023; 88: 2784
  • 29 Upreti GC, Singh T, Chaudhary D, Singh A. J. Org. Chem. 2023; 88: 11801
  • 30 Guo Y.-F, Luo T, Dong H. Org. Chem. Front. 2023; 10: 3553
  • 31 Kang EJ, Lee E. Chem. Rev. 2005; 105: 4348
  • 32 Nakata T. Chem. Rev. 2005; 105: 4314
  • 33 Ghosh A, Anderson D. Future Med. Chem. 2011; 3: 1181
  • 34 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
  • 35 Zhang XX, Diao LZ, Chen LZ, Ma D, Wang YM, Jiang H, Ruan BF, Liu XH. Eur. J. Med. Chem. 2022; 236: 114357
  • 36 Jebamani J, Pranesh S, Shivalingappa J, Narayanarao M, Pasha M. Synth. Commun. 2021; 51: 921
  • 37 Zhang Z, Cao X, Wang G, Zhang G, Zhang X. Green Chem. 2022; 24: 3035
  • 38 Ghosh K, Ghosh A, Mukherjee K, Rit RK, Sahoo AK. J. Org. Chem. 2020; 85: 8618
  • 39 Lin Y, He S.-F, Geng H, Xiao Y.-C, Ji K.-L, Zheng J.-F, Huang P.-Q. J. Org. Chem. 2021; 86: 5345
  • 40 Liu Y, Chen X.-L, Zeng F.-L, Sun K, Qu C, Fan L.-L, An Z.-L, Li R, Jing C.-F, Wei S.-K, Qu L.-B, Yu B, Sun Y.-Q, Zhao Y.-F. J. Org. Chem. 2018; 83: 11727
  • 41 McKay AI, Altalhi WA. O, McInnes LE, Czyz ML, Canty AJ, Donnelly PS, O’Hair RA. J. J. Org. Chem. 2020; 85: 2680
  • 42 Zhao H, Zhou X, Li B, Liu X, Guo N, Lu Z, Wang S. J. Org. Chem. 2018; 83: 4153
  • 43 Scattolin T, Bouayad-Gervais S, Schoenebeck F. Nature 2019; 573: 102
  • 44 Hu Z, Zhang M, Zhou Q, Xu X, Tang B. Org. Chem. Front. 2020; 7: 507
  • 45 Khan I, Shah BH, Zhao C, Xu F, Zhang YJ. Org. Lett. 2019; 21: 9452
  • 46 Liang J, Rao Y, Zhu W, Wen T, Huang J, Chen Z, Chen L, Li Y, Chen X, Zhu Z. Org. Lett. 2021; 23: 7028
  • 47 Chikkade PK, Kuninobu Y, Kanai M. Chem. Sci. 2015; 6: 3195
  • 48 Zheng S, Primer DN, Molander GA. ACS Catal. 2017; 7: 7957
  • 49 Li H.-C, Li G.-N, Sun K, Chen X.-L, Jiang M.-X, Qu L.-B, Yu B. Org. Lett. 2022; 24: 2431
  • 50 Yadav AK, Yadav LD. S. Org. Biomol. Chem. 2015; 13: 2606
  • 51 Kamijo S, Hoshikawa T, Inoue M. Tetrahedron Lett. 2011; 52: 2885
  • 52 Zhou H, Lu P, Gu X, Li P. Org. Lett. 2013; 15: 5646
  • 53 General Procedure for the Carbamoylation of Ethers with Isocyanate 1a A Schlenk tube was equipped with a magnetic stir bar and charged with isocyanate 1a (0.2 mmol, 1.0 equiv), tetrahydrofuran (1 mL), FeCl3 (5 mol%), and DTBP (2 equiv). The resulting mixture was sealed and degassed via vacuum evacuation and back-filled with nitrogen for three times after freezing using liquid nitrogen, and then irradiated with a 20 W 390 nm LED at room temperature for 24 h. After the reaction ended, the reaction solution was concentrated in vacuo and purified by silica gel column chromatography to give the desired product 3a with yield of 81%. 1H NMR (400 MHz, CDCl3): δ = 8.34 (s, 1 H), 7.38 (d, J = 8.3 Hz, 2 H), 7.05 (d, J = 8.1 Hz, 2 H), 4.38 (dd, J = 8.2, 6.0 Hz, 1 H), 4.06–3.74 (m, 2 H), 2.34–2.25 (m, 1 H), 2.24 (s, 3 H), 2.10 (td, J = 13.2, 6.3 Hz, 1 H), 1.94–1.77 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 170.14, 133.71, 132.96, 128.47, 118.64, 77.62, 68.62, 29.17, 24.57, 19.85.