Synlett
DOI: 10.1055/a-2283-5829
letter
Energetic Molecules

Electrochemical Efficient Synthesis of Two Azo Energetic Compounds

Jinhao Zhang
,
Yulan Song
,
Wenjia Hao
,
Rufang Peng
,
Bo Jin
This work was supported financially by the National Natural Science Foundation of China (22275151) and as a project of the State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology (project no. 22fksy18).


Abstract

Azo compounds with a high density, high enthalpy, and excellent detonation performance have received increasing research attention. The conventional method of chemical dehydrogenation that is used to form azo compounds involves the use of strong oxidants, resulting in environmental pollution. Electrochemical organic synthesis is considered an old method and a new technology. In this work, azofurazan tetrazole {H2AzFT; 5,5′-[diazene-1,2-diylbis(1,2,5-oxadiazole-4,3-diyl)]bis-1H-tetrazole} and azofurazan hydroxytetrazole (H2AzFTO) were synthesized by a green and efficient electrochemical dehydrogenation coupling of 5-(4-aminofurazan-3-yl)-1H-tetrazole and 5-(4-aminofurazan-3-yl)-1-hydroxytetrazole, respectively. The structures of H2AzFT and (NH4)2AzFTO were fully characterized by infrared spectroscopy, nuclear magnetic resonance, and elemental analysis, and their thermal stabilities were determined by differential thermal analysis.

Supporting Information



Publication History

Received: 05 January 2024

Accepted after revision: 07 March 2024

Accepted Manuscript online:
08 March 2024

Article published online:
27 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Zhang W, Zhang J, Deng M, Qi X, Nie F, Zhang Q. Nat. Commun. 2017; 8: 181
    • 3a Zhang Z.-B, Zhang J.-G, Gozin M. ChemistrySelect 2018; 3: 3463
    • 3b Liu Y, Zhao G, Tang Y, Zhang J, Hu L, Imler GH, Parrish DA, Shreeve JM. J. Mater. Chem. A 2019; 7: 7875
    • 3c Zhang J, Feng Y, Staples RJ, Zhang J, Shreeve JM. Nat. Commun. . 2021, 12: (1), 2146
    • 3d Song Y.-l, Huang Q, Jin B, Peng R. Def. Technol. 2022; 18: 2074
    • 4a Zhang J, Jin B, Peng R, Niu C, Xiao L, Guo Z, Zhang Q. Dalton Trans. 2019; 48: 11848
    • 4b Huang B, Xue Z, Chen S, Chen J, Li X, Xu K, Yan Q.-L. Appl. Surf. Sci. 2020; 510: 145454
    • 4c Li X, Sun Q, Lin Q, Lu M. Chem. Eng. J. (Amsterdam, Neth.) 2021; 406: 126817
    • 4d Song Y, Huang Q, Jin B, Peng R. J. Alloys Compd. 2022; 900: 163504
    • 4e Zhang J, Guo Z, Song Y, Hao W, Peng R, Jin B. Chem. Eng. J. (Amsterdam, Neth.) 2023; 453: 139762
    • 4f Zhang J, Jin Z, Xia Y, Li Y, Hao W, Guo Z, Wang Y, Peng R, Jin B. CrystEngComm 2023; 25: 3181
  • 5 Zhang J, Jin B, Li X, Hao W, Huang T, Lei B, Guo Z, Shen J, Peng R. Chem. Eng. J. (Amsterdam, Neth.) 2021; 404: 126287
    • 6a Li SH, Pang SP, Li XT, Yu YZ, Zhao XQ. Chin. Chem. Lett. 2007; 18: 1176
    • 6b Thottempudi V, Shreeve JM. J. Am. Chem. Soc. 2011; 133: 19982
    • 6c Qu Y, Zeng Q, Wang J, Ma Q, Li H, Li H, Yang G. Chem. Eur. J. 2016; 22: 12527
    • 6d Tang Y, Gao H, Mitchell LA, Parrish DA, Shreeve JM. Angew. Chem. Int. Ed. 2016; 55: 3200
  • 7 Fischer D, Klapötke TM, Piercey DG, Stierstorfer J. Chem. Eur. J. 2013; 19: 4602
    • 8a Izsák D, Klapötke TM, Lutter FH, Pflüger C. Eur. J. Inorg. Chem. 2016; 1720
    • 8b Qu Y, Babailov SP. J. Mater. Chem. A 2018; 6: 1915
    • 8c Liu Y, Tang M, Lai Y, Huang W, Tang Y. Org. Lett. 2023; 25: 1061
    • 9a Yoshida J, Kataoka K, Horcajada R, Nagaki A. Chem. Rev. 2008; 108: 2265
    • 9b Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 10a Liu C, Yu J, Bao L, Zhang G, Zou X, Zheng B, Li Y, Zhang Y. J. Org. Chem. 2023; 88: 3794
    • 10b Zhang Z, Wang H, Zheng J, Yu X, Liu F, Zhao J, Liu Y, Zhang M, Xia C, Cao J. J. Org. Chem. 2023; 88: 15687
  • 12 He H, Du J, Wu B, Duan X, Zhou Y, Ke G, Huo T, Ren Q, Bian L, Dong F. Green Chem. 2018; 20: 3722
    • 13a Yount JR, Zeller M, Byrd EF. C, Piercey DG. J. Mater. Chem. A 2020; 8: 19337
    • 13b Cao H, Long CJ, Yang D, Guan Z, He YH. J. Org. Chem. 2023; 88: 4145
  • 14 Leonard PW, Chavez DE, Pagoria PF, Parrish DL. Propellants, Explos., Pyrotech. 2011; 36: 233
  • 15 Wei H, Zhang J, He C, Shreeve JM. Chem. Eur. J. 2015; 21: 8607
  • 16 Wang R, Guo Y, Zeng Z, Twamley B, Shreeve JM. Chem. Eur. J. 2009; 15: 2625
  • 17 Zhang J, Mitchell LA, Parrish DA, Shreeve JM. J. Am. Chem. Soc. 2015; 137: 10532
  • 18 CCDC 2310434 contains the supplementary crystallographic data for (NH4)2AzFTO. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 19a Zhang C, Wang X, Huang H. J. Am. Chem. Soc. 2008; 130: 8359
    • 19b Zhang J, Feng Y, Bo Y, Staples RJ, Zhang J, Shreeve JM. J. Am. Chem. Soc. 2021; 143: 12665
    • 19c Zhang J, Jin B, Song Y, Hao W, Huang J, Guo J, Huang T, Guo Z, Peng R. Langmuir 2021; 37: 7118
  • 20 Azofurazan Tetrazole (H2AzFT): Typical Procedure A cell equipped with a commercial C rod (6 × 90 mm) anode and Pt plate (10 × 10 × 0.3 mm) cathode was charged with HAFT (1.0 mmol), (NH4)2CO3 (0.75 mmol), Et4NCl (2.0 mmol), and H2O (30 mL). The mixture was then electrolyzed at a constant potential of 1.8 V at r.t. for 3–4 h. The resultant mixture was acidified with 2 M HCl and extracted with EtOAc. The organic solvent was removed to give yellow crystals; yield: 0.284 g (94%); T onset (DTA, 10 ℃/min): 241 ℃. IR (KBr): 3448,2915, 1636, 1469, 1418, 1321, 1223, 1170, 1092, 1059, 997, 897, 767, 704, 611, 481 cm–1. 13C NMR (150 MHz, DMSO-d 6): δ = 162.32, 155.81, 136.56. Anal. Calcd for C6H2N14O2 (302.18): C, 23.85; H, 0.67; N, 64.89. Found: C, 23.66; H, 0.91; N, 65.24.