Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2025; 36(06): 739-743
DOI: 10.1055/a-2404-2285
DOI: 10.1055/a-2404-2285
letter
Borane-Catalyzed Divergent para and ortho C-Alkylation of Arylamines Using Benzylic Alcohols
This research was supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LY23B040001) and Programs Supported by Ningbo Natural Science Foundation (Grant No. 202003N4009).

Abstract
A catalyst-controlled divergent alkylation of diarylamines with benzylic alcohols has been developed. A para C-alkylation of diarylamines could be achieved by using B(C6F5)3 as the catalyst, whereas ortho C-alkylation of diarylamines could be achieved by using HBF4·Et2O as the catalyst. The salient features of this transformation include readily available materials, a broad substrate scope, easily available catalysts, and simple and mild reaction conditions.
Key words
Friedel–Crafts reaction - alkylation - arylamines - benzylic alcohols - divergent synthesis - borane catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2404-2285.
- Supporting Information
Publication History
Received: 28 July 2024
Accepted after revision: 27 August 2024
Accepted Manuscript online:
27 August 2024
Article published online:
26 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Amines: Synthesis, Properties and Applications. Lawrence SA. Cambridge University Press; Cambridge: 2004
- 1b Esezobor OZ, Zeng W, Niederegger L, Grübel M, Hess CR. J. Am. Chem. Soc. 2022; 144: 2994
- 1c Manfredi N, Cecconi B, Abbotto A. Eur. J. Org. Chem. 2014; 7069
- 1d Velusamy M, Shen J.-Y, Lin JT, Lin Y.-C, Hsieh C.-C, Lai C.-H, Lai C.-W, Ho M.-L, Chen Y.-C, Chou P.-T, Hsiao J.-K. Adv. Funct. Mater. 2009; 19: 2388
- 1e Blinova NV, Reynaud S, Roby F, Trchová M, Stejskal J. Synth. Met. 2010; 160: 1598
- 1f Drzyzga O. Chemosphere 2003; 53: 809
- 2 Qin J.-H, Wang Y, Ouyang J.-Y, Liu M, Ouyang X.-H. Org. Chem. Front. 2024; 11: 2638
- 3a Kim MS, Lee Y, Sung G.-H, Kim JH, Park JG, Kim HG, Baek KS, Cho JH, Han J, Lee K.-H, Hong S, Kim J.-H, Cho JY. Biomol. Ther. 2015; 23: 367
- 3b Brown WL, Griffin A, Jin S. WO 2004101522, 2004
- 4 Calloway NO. Chem. Rev. 1935; 17: 327
- 5a Leitch JA, McMullin CL, Paterson AJ, Mahon MF, Bhonoah Y, Frost CG. Angew. Chem. Int. Ed. 2017; 56: 15131
- 5b Jia S, Xing D, Zhang D, Hu W. Angew. Chem. Int. Ed. 2014; 53: 13098
- 6 Evano G, Theunissen C. Angew. Chem. Int. Ed. 2019; 58: 7202
- 7a Kumar R, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 1121
- 7b Guillena G, Ramón DJ, Yus M. Chem. Rev. 2010; 110: 1611
- 8a Zhu W, Sun Q, Wang Y, Yuan D, Yao Y. Org. Lett. 2018; 20: 3101
- 8b Wang S, Force G, Guillot R, Carpentier J.-F, Sarazin Y, Bour C, Gandon V, Lebœuf D. ACS Catal. 2020; 10: 10794
- 8c Rank CK, Özkaya B, Patureau FW. Org. Lett. 2019; 21: 6830
- 8d Colomer I. ACS Catal. 2020; 10: 6023
- 8e Schroeter F, Lerch S, Kaliner M, Strassner T. Org. Lett. 2018; 20: 6215
- 8f Kaspar LT, Fingerhut B, Ackermann L. Angew. Chem. Int. Ed. 2005; 44: 5972
- 8g Song G, Luo G, Oyamada J, Luo Y, Hou Z. Chem. Sci. 2016; 7: 5265
- 8h Winfrey L, Yun L, Passeri G, Suntharalingam K, Pulis AP. Chem. Eur. J. 2024; 30: e202303130
- 8i Perez M, Mahdi T, Hounjet LJ, Stephan DW. Chem. Commun. 2015; 51: 11301
- 9 Beletskaya IP, Najera C, Yus M. Chem. Soc. Rev. 2020; 49: 7101
- 10a Meng S.-S, Tang X, Luo X, Wu R, Zhao J.-L, Chan AS. C. ACS Catal. 2019; 9: 8397
- 10b Nallagonda R, Rehan M, Ghorai P. J. Org. Chem. 2014; 79: 2934
- 11a Kumar G, Roy S, Chatterjee I. Org. Biomol. Chem. 2021; 19: 1230
- 11b Ma Y, Lou S.-J, Hou Z. Chem. Soc. Rev. 2021; 50: 1945
- 11c Guru MM, Thorve PR, Maji B. J. Org. Chem. 2019; 85: 806