RSS-Feed abonnieren
DOI: 10.1055/a-2457-0045
Recent Advances in Transition-Metal-Catalyzed Enantioconvergent Transformations of Epoxides
Autor*innen
We are grateful to the National Natural Science Foundation of China (22071073, 22301092, and 22271112), the Fundamental Research Funds for the Central Universities, China (CCNU24JCPT016), the Wuhan Top-Notch Talent Program, and start-up funding from Central China Normal University (CCNU) for financial support.

Abstract
In recent years, asymmetric ring-opening reactions of epoxides have emerged as a compelling strategy for constructing chiral building blocks in organic synthesis. Among these, transition-metal-catalyzed stereoselective transformations of epoxides have garnered particular attention for their high efficiency and cost-effectiveness. The increasing interest and advancements in this area have spurred exploration into diverse transition-metal catalysts and chiral ligands, highlighting their potential to facilitate a wide range of transformations with enhanced efficiency and flexibility. This short review showcases significant achievements in transition-metal-catalyzed enantioconvergent transformations of epoxides, emphasizing their scope of application and reaction mechanisms.
1 Introduction
2 Palladium-Catalyzed Enantioconvergent Cross-Coupling of Epoxides
3 Nickel-Catalyzed Enantioconvergent Cross-Coupling of Epoxides
4 Titanium-Catalyzed Enantioconvergent Cross-Coupling of Epoxides
5 Iridium-Catalyzed Enantioconvergent Cross-Coupling of Epoxides
6 Cobalt-Catalyzed Enantioconvergent Cross-Coupling of Epoxides
7 Copper-Catalyzed Enantioconvergent Cross-Coupling of Epoxides
8 Conclusions and Outlook
Key words
transition-metal-catalyzed - epoxides - enantioconvergent - cross-coupling - functionalizationPublikationsverlauf
Eingereicht: 30. Juli 2024
Angenommen nach Revision: 29. Oktober 2024
Accepted Manuscript online:
29. Oktober 2024
Artikel online veröffentlicht:
25. November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Bernice F, Kilcrease C. Curr. Infect. Dis. Rep. 2022; 24: 89
- 2 Walsh SP, Severino A, Zhou C, He J, Liang G.-B, Tan CP, Cao J, Eiermann GJ, Xu L, Salituro G. Bioorg. Med. Chem. Lett. 2011; 21: 3390
- 3 Jacobsen EN. Acc. Chem. Res. 2000; 33: 421
- 4 Lidskog A, Li Y, Wärnmark K. Catalysts 2020; 10: 705
- 5 Pastor I, Yus M. Curr. Org. Chem. 2005; 9: 1
- 6 Halpern J, Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5347
- 7 Walsh PJ, Kozlowski MC. Fundamentals of Asymmetric Catalysis . University Science Books; Sausalito (CA, USA): 2009
- 8 Zhang C, Geng X, Zhang X, Gnanou Y, Feng X. Prog. Polym. Sci. 2023; 136: 101644
- 9 Sarazin Y, Carpentier J.-F. Chem. Rev. 2015; 115: 3564
- 10 Longo JM, Sanford MJ, Coates GW. Chem. Rev. 2016; 116: 15167
- 11 Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Chem. Rev. 2016; 116: 2170
- 12 Nugent WA. J. Am. Chem. Soc. 1992; 114: 2768
- 13 Martinez LE, Leighton JL, Carsten DH, Jacobsen EN. J. Am. Chem. Soc. 1995; 117: 5897
- 14 Iida T, Yamamoto N, Sasai H, Shibasaki M. J. Am. Chem. Soc. 1997; 119: 4783
- 15 Iida T, Yamamoto N, Matsunaga S, Woo HG, Shibasaki M. Angew. Chem. Int. Ed. 1998; 37: 2223
- 16 Schaus SE, Jacobsen EN. Org. Lett. 2000; 2: 1001
- 17 Schneider C, Sreekanth AR, Mai E. Angew. Chem. Int. Ed. 2004; 116: 5809
- 18 Plancq B, Ollevier T. Chem. Commun. 2012; 48: 3806
- 19 Ready JM, Jacobsen EN. J. Am. Chem. Soc. 2001; 123: 2687
- 20 Ready JM, Jacobsen EN. Angew. Chem. Int. Ed. 2002; 41: 1374
- 21 Arai K, Salter MM, Yamashita Y, Kobayashi S. Angew. Chem. Int. Ed. 2007; 46: 955
- 22 Arai K, Lucarini S, Salter MM, Ohta K, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2007; 129: 8103
- 23 Kalow JA, Doyle AG. J. Am. Chem. Soc. 2010; 132: 3268
- 24 Kalow JA, Doyle AG. J. Am. Chem. Soc. 2011; 133: 16001
- 25 Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN. Science 1997; 277: 936
- 26 Ready JM, Jacobsen EN. J. Am. Chem. Soc. 1999; 121: 6086
- 27 Kim SK, Jacobsen EN. Angew. Chem. Int. Ed. 2004; 43: 3952
- 28 Shaw S, White JD. Chem. Rev. 2019; 119: 9381
- 29 Clarke RM, Storr T. Dalton Trans. 2014; 43: 9380
- 30 Matsunaga S, Shibasaki M. Synthesis 2013; 45: 421
- 31 Abd El Sater M, Jaber N, Schulz E. ChemCatChem 2019; 11: 3662
- 32 Zhang X.-M, Li B.-S, Wang S.-H, Zhang K, Zhang F.-M, Tu Y.-Q. Chem. Sci. 2021; 12: 9262
- 33 Ma D, Miao C.-B, Sun J. J. Am. Chem. Soc. 2019; 141: 13783
- 34 Wu H, Wang Q, Zhu J. J. Am. Chem. Soc. 2019; 141: 11372
- 35 Bhat V, Welin ER, Guo X, Stoltz BM. Chem. Rev. 2017; 117: 4528
- 36 Trost BM. J. Am. Chem. Soc. 1999; 121: 10834
- 37 Parasram M, Shields BJ, Ahmad O, Knauber T, Doyle AG. ACS Catal. 2020; 10: 5821
- 38 Lin S, Chen Y, Li F, Shi C, Shi L. Chem. Sci. 2020; 11: 839
- 39 Zhang Z, Richrath RB, Gansäuer A. ACS Catal. 2019; 9: 3208
- 40 Trost BM, Vranken DL. V. Chem. Rev. 1996; 96: 395
- 41 Trost BM, Jiang C. J. Am. Chem. Soc. 2001; 123: 12907
- 42 Trost BM, Sacchi KL, Schroeder GM, Asakawa N. Org. Lett. 2002; 4: 3427
- 43 Trost BM, Dogra K, Franzini M. J. Am. Chem. Soc. 2004; 126: 1944
- 44 Du C, Li L, Li Y, Xie Z. Angew. Chem. Int. Ed. 2009; 48: 7853
- 45 Mangion I, Strotman N, Drahl M, Imbriglio J, Guidry E. Org. Lett. 2009; 11: 3258
- 46 Li G, Feng X, Du H. Org. Biomol. Chem. 2015; 13: 5826
- 47 Rajkumar S, Clarkson GJ, Shipman M. Org. Lett. 2017; 19: 2058
- 48 Doyle MG. J, Gabbey AL, McNutt W, Lundgren RJ. Angew. Chem. Int. Ed. 2021; 60: 26459
- 49 Song C, Zhang H.-H, Yu S. ACS Catal. 2022; 12: 1428
- 50 Zhao Y, Weix DJ. J. Am. Chem. Soc. 2015; 137: 3237
- 51 Banerjee A, Yamamoto H. Org. Lett. 2017; 19: 4363
- 52 Wu L, Yang G, Zhang W. CCS Chem. 2020; 2: 623
- 53 Lau SH, Borden MA, Steiman TJ, Wang LS, Parasram M, Doyle AG. J. Am. Chem. Soc. 2021; 143: 15873
- 54 Höthker S, Mika R, Goli H, Gansäuer A. Chem. Eur. J. 2023; 29: e202301031
- 55 Höthker S, Plato A, Grimme S, Qu Z.-W, Gansäuer A. Angew. Chem. Int. Ed. 2024; 63: e202405911
- 56 Shen J, Xu Z, Yang S, Li S, Jiang J, Zhang Y.-Q. J. Am. Chem. Soc. 2023; 145: 21122
- 57 Li S, Zhu H, Li L, Chen W, Jiang J, Qu ZW, Grimme S, Zhang YQ. Angew. Chem. Int. Ed. 2023; 62: e202309525
- 58 Feng J, Garza VJ, Krische MJ. J. Am. Chem. Soc. 2014; 136: 8911
- 59 Xu G, Yang G, Wang Y, Shao P.-L, Yau JN. N, Liu B, Zhao Y, Sun Y, Xie X, Wang S, Zhang Y, Xia L, Zhao Y. Angew. Chem. Int. Ed. 2019; 58: 14082
- 60 Wu L, Shao Q, Kong L, Chen J, Wei Q, Zhang W. Org. Chem. Front. 2020; 7: 862
- 61 Li J, Li S, Cui G.-H, Yuan K, Wang C, Yang C, Zhang G, Guo R. ACS Catal. 2024; 14: 7553