RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2025; 36(08): 1013-1016
DOI: 10.1055/a-2500-7386
DOI: 10.1055/a-2500-7386
letter
A Free-Radical Decarboxylative Coupling of Cinnamic Acids with Acetonitrile
We thank the Key Project of Natural Science Foundation of Gansu Province (No. 24JRRA636) and the National Natural Science Foundation of China (No. 22371129) for financial support.

Abstract
A copper-catalyzed decarboxylative coupling of cinnamic acids with acetonitrile was developed. By using the free-radical hydrogen-atom-transfer strategy to activate the C–H bond in acetonitrile, a series of nitrile compounds were successfully synthesized. This method uses the common solvent acetonitrile as a source of a nitrile group for introduction into organic molecules, avoiding the use of highly toxic nitriles in conventional nitrile compound syntheses.
Key words
free radicals - C–H bond activation - cinnamic acids - acetonitrile - nitriles - copper catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2500-7386.
- Supporting Information
Publikationsverlauf
Eingereicht: 07. Oktober 2024
Angenommen nach Revision: 11. Dezember 2024
Accepted Manuscript online:
11. Dezember 2024
Artikel online veröffentlicht:
20. Januar 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a The Chemistry of the Cyano Group . Rappoport Z. Wiley Interscience; London: 1970
- 1b Fleming FF, Wang Q. Chem. Rev. 2003; 103: 2035
- 1c Mąkosza M. Chem. Soc. Rev. 2010; 39: 2855
- 2a Chatani N, Hanafusa T. J. Org. Chem. 1986; 51: 4714
- 2b Sammis GM, Jacobsen EN. J. Am. Chem. Soc. 2003; 125: 4442
- 2c Mita T, Sasaki K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2005; 127: 514
- 2d Yamaguchi K, Xu N, Jin X, Suzuki K, Mizuno N. Chem. Commun. 2015; 51: 10034
- 3a Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2011; 50: 519
- 3b Pawar AB, Chang S. Org. Lett. 2015; 17: 660
- 4a Gong T.-J, Xiao B, Cheng W.-M, Su W, Xu J, Liu Z.-J, Liu L, Fu Y. J. Am. Chem. Soc. 2013; 135: 10630
- 4b Li J, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 3635
- 4c Liu W, Ackermann L. Chem. Commun. 2014; 50: 1878
- 4d Dong J, Wu Z, Liu Z, Liu P, Sun P. J. Org. Chem. 2015; 80: 12588
- 5 Xu H, Liu P.-T, Li Y.-H, Han F.-S. Org. Lett. 2013; 15: 3354
- 6 Pan C, Yang C, Li K, Zhang K, Zhu Y, Wu S, Zhou Y, Fan B. Org. Lett. 2021; 23: 7188
- 7a Chu X.-Q, Ge D, Shen Z.-L, Loh T.-P. ACS Catal. 2018; 8: 258
- 7b Li J, Wang Z, Wu N, Gao G, You J. Chem. Commun. 2014; 50: 15049
- 7c Li Y, Liu B, Li H.-B, Wang Q, Li J.-H. Chem. Commun. 2015; 51: 1024
- 7d Bunescu A, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2015; 54: 3132
- 7e Chatalova-Sazepin C, Wang Q, Sammis GM, Zhu J. Angew. Chem. Int. Ed. 2015; 54: 5443
- 7f Wang F, Qi X, Liang Z, Chen P, Liu G. Angew. Chem. Int. Ed. 2014; 53: 1881
- 7g Liu Y.-Y, Yang X.-H, Song R.-J, Luo S, Li J.-H. Nat. Commun. 2017; 8: 14720
- 7h Wu X, Riedel J, Dong VM. Angew. Chem. Int. Ed. 2017; 56: 11589
- 7i Su H, Wang L, Rao H, Xu H. Org. Lett. 2017; 19: 2226
- 7j Chu X.-Q, Xing Z.-H, Meng H, Xu X.-P, Ji S.-J. Org. Chem. Front. 2016; 3: 165
- 7k Yu Y, Zhuang S, Liu P, Sun P. J. Org. Chem. 2016; 81: 11489
- 7l Bunescu A, Ha TM, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2017; 56: 10555
- 8a Li Z, Xiao Y, Liu Z.-Q. Chem. Commun. 2015; 51: 9969
- 8b Liu Z.-Q, Li Z. Chem. Commun. 2016; 52: 14278
- 8c Xiao Y, Liu Z.-Q. Org. Lett. 2019; 21: 8810
- 9 Xie Y, Guo S, Wu L, Xia C, Huang H. Angew. Chem. Int. Ed. 2015; 54: 5900
- 10 Allylic Nitriles 1–18; General Procedure A Schlenk tube was charged with the appropriate substrate (0.3 mmol, 1.0 equiv), MeCN (3 mL), TBPB (3.0 equiv), Cu(OAc)2 (20 mol%), and Na2CO3 (1.0 equiv), and the mixture was stirred at 110 °C (oil-bath temperature) until the starting material was consumed (TLC). The mixture was then cooled to r.t., diluted with Et2O, and washed with brine. The aqueous phase was extracted with Et2O, and the combined organic extracts were dried (Na2SO4) and concentrated in vacuum. The resulting mixture was filtered and concentrated, and the residue was purified by column chromatography (silica gel). 3E-4-Phenylbut-3-enenitrile Purified by column chromatography [silica gel, PE–EtOAc (60:1)] to give a white solid; yield: 22.4 mg (52%); mp 51–53 °C. 1H NMR (500 MHz, CH2Cl2): δ = 7.44–7.20 (m, 5 H), 6.74 (d, J = 15.8 Hz, 1 H), 6.06 (d, J = 15.8 Hz, 1 H), 3.30 (dd, J = 5.6, 1.7 Hz, 2 H). 13C NMR (126 MHz, CDCl3): δ = 135.86, 134.87, 128.93, 128.51, 126.67, 117.49, 116.90, 21.00.
For an excellent review on nitrile C–H functionalization, see:
For selected examples, see: