RSS-Feed abonnieren
DOI: 10.1055/a-2518-6288
Efficient Synthesis of N-Phenyl-4-(trifluoromethyl)thiazol-2-amine and Its Antibacterial Activity
We are grateful for the financial support from the National Natural Science Foundation of China (GZ-1645), the Key Research & Development Project in Shaanxi Province (2022GY-195, 2023-YBGY-183), the Basic Research Project of Natural Science of Shaanxi Province (2021JLM-30), and the Shaanxi Provincial Department of Education Science and Technology Project (23JC035).

Abstract
N-Phenyl-4-(trifluoromethyl) thiazole-2-amine is an important class of fluorinated heterocyclic compounds, particularly in the fields of fungicides and insecticides. However, there are very limited reports on the synthesis of such compounds. Here, we report a concise and efficient new method for synthesizing this thiazol-2-amine, which has good substrate versatility, strong functional group tolerance, and a single-product structure. The product structure and yield can be effectively and selectively controlled by adding or not adding alkali and other factors. Bactericidal activity tests showed that most of these compounds exhibit bactericidal activity, with the best bactericidal rate reaching 99%.
Key words
trifluoromethyl - thiazole-2-amine - phenylthiourea - transition-metal free - bactericidal activitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2518-6288.
- Supporting Information
Publikationsverlauf
Eingereicht: 10. Dezember 2024
Angenommen nach Revision: 16. Januar 2025
Accepted Manuscript online:
16. Januar 2025
Artikel online veröffentlicht:
12. März 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Mikami K, Itoh Y, Yamanaka M. Chem. Rev. 2004; 104: 1
- 1b Kirk KL. Org. Process Res. Dev. 2008; 2: 305
- 1c Saito A, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2017; 56: 5551
- 1d O'Hagan D, Schaffrath C, Cobb SL, Hamilton JT. G, Murphy CD. Nature 2002; 416: 279
- 2a Pitterna T, Böger M, Maienfisch P. Chimia 2004; 58 (03) 108
- 2b Bégué J.-P, Bonnet-Delpon D. J. Fluorine Chem. 2006; 127 (08) 992
- 2c Hagmann WK. J. Med. Chem. 2008; 51 (15) 4359
- 2d Salwiczek M, Nyakatura EK, Gerling U, Ye S, Koksch B. Chem. Soc. Rev. 2012; 41: 2135
- 2e Foster RW, Lenz EN, Simpkins NS, Stead D. Chem. Eur. J. 2017; 23 (37) 8810
- 3a Welch JT. Tetrahedron 1987; 43 (14) 3123
- 3b Ismail FM. D. J. Fluorine Chem. 2002; 118: 27
- 3c Böhm HJ, Banner D, Bendels S, Kansy M, Kuhn B, Muller K, Obst-Sander U, Stahl M. ChemBioChem 2004; 5: 637
- 3d See ref. 2c
- 3e Cho EJ, Senecal TD, Kinzel T, Zhang Y, Watson DA, Buchwald SL. Science 2010; 328: 1679
- 4a Rodrigues I, Bonnet-Delpon D, Bégué J.-P. J. Org. Chem. 2001; 66: 2098
- 4b Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
- 4c Meanwell NA. J. Med. Chem. 2011; 54: 2529
- 5a Motoki R, Kanai M, Shibasaki M. Org. Lett. 2007; 9: 2997
- 5b Honey MA, Pasceri R, Lewis W, Moody CJ. J. Org. Chem. 2012; 77: 1396
- 6a Parise L, Pelagalli A, Pellacani L, Sciubba F, Vergari MC, Fioravanti S. J. Org. Chem. 2016; 81: 2864
- 6b Chen P, Yue Z.-T, Zhang J.-Y, Lv X, Wang L, Zhang J.-L. Angew. Chem. Int. Ed. 2016; 55: 13316
- 7a Muller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 7b Ma JA, Cahard D. J. Fluorine Chem. 2007; 128: 975
- 7c Hagooly Y, Gatenyo J, Hagooly A, Rozen S. J. Org. Chem. 2009; 74: 8578
- 9a Katagiri T, Katayama Y, Taeda M, Ohshima T, Iguchi N, Uneyama K. J. Org. Chem. 2011; 76: 9305
- 9b Studer AA. Angew. Chem. Int. Ed. 2012; 51: 8950
- 9c See ref. 4b
- 9d Luo B.-B, Weng Z.-Q. Chem. Commun. 2018; 54: 10750
- 10a Morandi B, Carreira EM. Org. Lett. 2011; 13: 5984
- 10b Ji S.-L, Alkil AE, Su Y.-P, Xia X.-W, Chong S.-Y, Wang K.-H, Huang D.-F, Fu Y, Hu Y.-L. Synlett 2015; 26: 1725
- 10c Alonso C, Marigorta EM, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
- 10d Wu W, Weng Z.-Q. Synthesis 2018; 50: 1958
- 11a Morisaki K, Morimoto H, Ohshima T. Chem. Commun. 2017; 53: 6319
- 11b Mszar NW, Mikus MS, Torker S, Haeffner F, Hoveyda AH. Angew. Chem. Int. Ed. 2017; 56: 8736
- 11c Wang D, Carlton CG, Tayu M, McDouall JJ. W, Perry GJ. P, Procter DJ. Angew. Chem. Int. Ed. 2020; 59: 15918
- 12a Takahashi K, Ano Y, hatani N. Chem. Commun. 2020; 56: 11661
- 12b Alberca S, Matador E, Iglesias-Sigüenza J, Retamosa MC, Fernández R, Lassaletta JM, Monge D. Chem. Commun. 2021; 57: 11835
- 13a Zhang H.-Y, Huo W.-G, Ge C, Zhao J.-Q, Zhang Y.-C. Synlett 2017; 28: 962
- 13b Liu X.-D, Wang Y, Ma H.-Y, Xing C.-H, Yuan Y, Lu L. Tetrahedron 2017; 73: 2283
- 13c Chen F.-F, Chang Z.-X, Paidamoyo C, Zeng X.-F, Wang Y.-J, Han X.-Y. Synlett 2019; 30: 240
- 14a Zhang Q.-W, Hartwig JF. Chem. Commun. 2018; 54: 10124
- 14b Fujita T, Ide K, Jankins TC, Nojima T, Ichikawa J. Asian J. Org. Chem. 2019; 8: 637
- 14c Mykhailiuk PK. Chem. Rev. 2020; 120: 12718
- 14d Li S.-R, Yan W.-W, Shi J.-J, Dan T.-T, Han Y.-J, Cao Z.-C, Yang M.-Y. ACS Catal. 2023; 13: 2142
- 15a Burriss A, Edmunds AJ. F, Emery D, Hall RG, Jacob O, Schaetzer J. Pest Manage. Sci. 2018; 74: 1228
- 15b Liu X.-L, Liu H.-M, Bian C, Wang K.-H, Wang J.-J, Huang D.-F, Su Y.-P, Lv X.-B, Hu Y.-L. J. Org. Chem. 2022; 87: 5882
- 15c Khoroshilova OV, Boyarskaya IA, Vasilyev AV. J. Org. Chem. 2022; 87: 15845
- 15d Vayer M, Mayer RJ, Moran J, Lebœuf D. ACS Catal. 2022; 12: 10995
- 15e Kim H, Jung Y.-J, Cho SH. Org. Lett. 2022; 24: 2705
- 16a Onyeagusi CI, Malcolmson SJ. ACS Catal. 2020; 10: 12507
- 16b Yang T.-Y, Deng Z.-B, Wang K.-H, Li P.-F, Huang D.-F, Su Y.-P, Hu Y.-L. J. Org. Chem. 2020; 85: 924
- 16c Liu X, Liu L, Huang T.-Z, Zhang J.-J, Tang Z, Li C.-Y, Chen T.-Q. Org. Lett. 2021; 23: 4930
- 16d Zhang X.-L, Ning Y.-Q, Liu Z.-H, Li S, Zanoni G, Bi X.-H. ACS Catal. 2022; 12: 8802
- 17a Xu S.-X, Deng Y.-P, He J.-J, Zeng Q.-D, Liu C, Zhang Y, Zhu B, Cao S. Org. Lett. 2021; 23: 5853
- 17b Liu S, Huang Y.-G, Wang J, Qing F.-L, Xu X.-H. J. Am. Chem. Soc. 2022; 144: 1962
- 18a Liu Y, Huang J.-Q, Sun Z.-D, Deng Y.-P, Qian Y.-H, Huang Q.-C, Cao S. Org. Biomol. Chem. 2024; 22: 4641
- 18b Huang Z.-L, Yang H, Lai X.-B, Li J, Yang W.-R, Zheng J. J. Org. Chem. 2024; 89: 12387
- 19a Zhang X.-X, Liu G.-Y, Peng Y.-Y, Li H, Zhou Y.-R. Eur. J. Org. Chem. 2022; e202200658
- 19b Lu D, Li S.-S, Yang X.-G, Yin S.-F, Kambe N, Qiu R.-H. Org. Lett. 2022; 24: 5197
- 19c Zhang J.-D, Feng X.-M, Guo T.-Y, Han X.-L, Liu H.-D, Li X.-Y, Wang X, Li H.-S, Li X.-J. ChemistrySelect 2023; 8: e202301062
- 19d Liu H, He X, Chen Z.-C, Zhang J.-C, Fang X.-J, Sun Z.-Z, Chu W.-Y. Chem. Asian J. 2023; 18: e202300039
- 20a Tang Y, Yu Q, Ma S.-M. Org. Chem. Front. 2017; 4: 1762
- 20b Keerthika K, Nath S, Geetharani K. Catal. Sci. Technol. 2020; 10: 7142
- 21a Kundu BK, Han C, Srivastava P, Nagar S, White KE, Krause JA, Elles CG, Sun Y.-J. ACS Catal. 2023; 13: 8119
- 21b Aradi K, Kiss L. Synthesis 2023; 55: 1834
- 22 Lu Y, Liu Z.-R, Liu C, Wu Y.-P, Li L, Liu S.-Y, Wang H, Gao W, Liu Z.-X, Chen J.-B. Org. Chem. Front. 2023; 10: 1283
- 23 Zhao X, Zhong B, Dong L.-K, Zhang Y.-S, Luo H.-T, Yang J.-D, Cheng J.-P. Chem. Eur. J. 2024; 30: e202400995
- 24a Wang Y.-X, Li S.-J, Jiang F, Lan Y, Wang X.-M. J. Am. Chem. Soc. 2024; 146: 19286
- 24b Guo P, Pu G.-L, Wang G.-R, Zeng L.-Y, Li W.-P, Li X.-F, Zhou P.-P, He C.-Y. Org. Lett. 2024; 26: 3097
- 25 Song Q.-L, Zhang L, Wang B, Chen Z.-R, Jin W.-W, Xia Y, Wu S.-F, Liu C.-J, Zhang Y.-H. Org. Lett. 2024; 26: 3685
- 26a Zhao X.-W, Gao X, Zhao F.-L, Wang L, Zhang M, Zhou N.-N. Org. Lett. 2024; 26: 7261
- 26b Han J.-F, Gao F.-L, Chen L, He Z.-X, Lin Y.-Q, Ye K.-Y. Chem. Asian J. 2024; 13: e202300579
- 26c Tang L, Jia F.-J, Yu R.-J, Wei X.-M, Zhang L.-F, Lv G, Zhou Q.-J. J. Org. Chem. 2024; 89: 13117
- 27 Ding Y, Liu Y, Ge J, Wu X, Li Z, Cheng G. J. Org. Chem. 2024; 89: 12255
- 28 Emilia O, Magdalena B, Marcin KK, Grzegorz M, Heina H. J. Fluorine Chem. 2019; 220: 35
- 29 Tanaka K, Nomura K, Oda H, Yoshida S, Mitsuhashi K. J. Heterocycl. Chem. 1991; 28: 907
- 30 Wagdy RA, Abutaleb NS, Fathalla RK, Elgammal Y, Weck S, Pal R, Fisher PD, Ducho C, Abadi SH, Seleem MN, Engel M, Abdel-Halim M. Eur. J. Med. Chem. 2023; 261: 115789
- 31 Rajendra MA, Naseem M, Joy MN, Sunil K, Sajith AM, Howari F, Nazzal Y, Xavier C, Alshammari MB, Haridal KR. Mol. Diversity 2022; 26: 1761
- 32 Nguyen W, Jacobson J, Jarman KE, Jousset SH, Haety L, McMahon J, Lewin SR, Purcell DF, Sleebs BE. J. Med. Chem. 2019; 62: 5148
- 33 Wilkes MC, Lavrik PB, Greenplate J. J. Agric. Food Chem. 1991; 39: 1652
- 34 Colella M, Musci P, Carlucci C, Lillini S, Tomassetti M, Aramini A, Degennaro L, Luisi R. ACS Omega 2018; 3: 14841
- 35a Li Z.-B, Zhang J, Shi Y.-R, Li H, Yang M.-G, Zhu W.-Q, Fan Q.-W, Li Y. Synlett 2024; 19: 2241
- 35b Li Y, Shi Y.-R, Li Z.-B, Li H, Zhu W.-Q, Fan Q.-W, Li X.-Y. Synlett 2025; 2: 186
- 36a Li Y, Jing Y, Shi Y.-R, Li H, Yang M.-G, Kou Y.-L, Fan Q.-W. Eur. J. Org. Chem. 2024; 27: e202301255
- 36b Zhong M, Li X.-Y, Zhang J, Chen L, Hu Y.-L, Li Y. Asian J. Org. Chem. 2024; e202400541
- 36c Zhao X.-W, Zhu W.-Q, Jing Y, Shi Y.-R, Zhang J, Li H, Yang M.-G, Fan Q.-W, Li Y. Chem. Eur. J. 2024; 30: e202304056
- 37a Babbaud C, Kitchell AG, Labots H, Reuteb G, Simonsen B. Fleischwirtschaft 1967; 47: 1313
- 37b Kramer BJ. M, Gilbert RJ. J. Hyg. 1978; 81: 151
- 38 CCDC 2405407 (3a) and 2405408 (4a) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.