Subscribe to RSS
DOI: 10.1055/a-2524-9014
A Concise Account on Organocatalyzed Asymmetric Synthesis of Epoxide and Aziridine Derivatives from α,β-Unsaturated Carbonyl Compounds
The authors gratefully acknowledge Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; grants 2021/12394-0 and 2024/05518-2), GlaxoSmithKline, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Finance Code 001), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; grant 303973/2023-4) for funding and fellowships.

Abstract
Epoxides and aziridines are important pharmacologically active compounds that are found in many drugs. These three-membered rings are also employed in the synthesis of a wide range of other heterocycles. In this account, we highlight the contributions of our research group to the organocatalyzed asymmetric synthesis of epoxides and aziridines from α,β-unsaturated carbonyl compounds, followed by multicomponent reactions that afford novel peptidomimetics. Additionally, these scaffolds have been employed in the synthesis of lactones, lactams, and hydantoins, showcasing their versatility in drug development and synthetic chemistry.
1 Introduction
2 Epoxides
2.1 γ-Lactones
3 Aziridines
3.1 γ-Lactams
3.2 Hydantoins
4 Conclusion
Publication History
Received: 18 November 2024
Accepted after revision: 24 January 2025
Accepted Manuscript online:
24 January 2025
Article published online:
12 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Park JE, Park J, Jun Y, Oh Y, Ryoo G, Jeong YS, Gadalla HH, Min JS, Jo JH, Song MG, Kang KW, Bae SK, Yeo Y, Lee W. J. Controlled Release 2019; 302: 148
- 2 Rustagi T, Aslanian HR, Laine L. J. Clin. Gastroenterol. 2015; 49: 837
- 3 Kelly GT, Liu C, Smith R, Coleman RS, Watanabe CM. H. Chem. Biol. 2006; 13: 485
- 4 Agbowuro AA, Huston WM, Gamble AB, Tyndall JD. A. Med. Res. Rev. 2018; 38: 1295
- 5 Madala PK, Tyndall JD. A, Nall T, Fairlie DP. Chem. Rev. 2010; 110: PR1
- 6 Hanada K, Tamai M, Yamagishi M, Ohmura S, Sawada L, Tanaka I. Agric. Biol. Chem. 1978; 42: 523
- 7 Li Z. Chin. J. Antibiot. 1995; 20: 169
- 8 Grzonka Z, Kasprzykowski F, Wiczk W. Cysteine Proteases . In Industrial Enzymes . Polaina J, MacCabe AP. Springer; Dordrecht: 2007: 181-195
- 9 Yasuda Y, Kaleta J, Brömme D. Adv. Drug Delivery Rev. 2005; 57: 973
- 10 Martin SL, Moffitt KL, McDowell A, Greenan C, Bright-Thomas RJ, Jones AM, Webb AK, Elborn JS. Pediatric Pulmonology 2010; 45: 860
- 11 Olson OC, Joyce JA. Nat. Rev. Cancer 2015; 15: 712
- 12a Kaur MB. B. K. Curr. Organocatal. 2022; 9: 281
- 12b Vchislo NV. Mini-Rev. Org. Chem. 2017; 14: 197
- 13a Meninno S, Lattanzi A. Chem. Eur. J. 2016; 22: 3632
- 13b Meninno S, Lattanzi A. Catal. Today 2017; 285: 39
- 14 Antenucci A, Dughera S, Renzi P. ChemSusChem 2021; 14: 2785
- 15 Palchykov VA, Zhurakovskyi O. Adv. Heterocycl. Chem. 2021; 13: 159
- 16 Meninno S, Lattanzi A. ACS Org. Inorg. Au 2022; 2: 289
- 17 Kumar V, Chimni SS. ChemistrySelect 2023; 8: e202301963
- 18 Xia QH, Ge HQ, Ye CP, Liu ZM, Su KX. Chem. Rev. 2005; 105: 1603
- 19 De Faveri G, Ilyashenko G, Watkinson M. Chem. Soc. Rev. 2011; 40: 1722
- 20 Shi Y. Acc. Chem. Res. 2004; 37: 488
- 21 Page PC. B, Barllet CJ, Chan Y, Allin SM, McKenzie MJ, Lacour J, Jones GA. Org. Biomol. Chem. 2016; 14: 4220
- 22 Jørgensen KA, Marigo M, Franzén J, Poulsen TB, Zhuang W. J. Am. Chem. Soc. 2005; 127: 6964
- 23 Jørgensen KA, Davis RL, Stiller J, Naicker T, Jiang H. Angew. Chem. Int. Ed. 2014; 53: 7406
- 24 MacMillan DW. C, Lee S. Tetrahedron 2006; 62: 11413
- 25 MacMillan DW. C, Amatore M, Beeson TD, Brown SP. Angew. Chem. Int. Ed. 2009; 48: 5121
- 26 Majdecki M, Tysszka-Gumkowska A, Jurczak J. Org. Lett. 2020; 22: 8687
- 27 He W, Dai S, Ji N, Wang L, Zhang L. Tetrahedron Lett. 2021; 68: 152941
- 28 Bica-Schroder K, Scharinger F, Pálvolgyi AM, Weisz M, Weil M, Stanetty C, Schnurch M. Angew. Chem. Int. Ed. 2022; 61: e202202189
- 29 Deobald AM, Corrêa AG, Rivera DG, Paixão MW. Org. Biomol. Chem. 2012; 10: 7681
- 30 Mase N, Nakai Y, Ohara N, Yoda H, Takabe K, Tanaka F, Barbas CF. J. Am. Chem. Soc. 2006; 128: 734
- 31 Hayashi Y, Samanta S, Gotoh H, Ishikawa H. Angew. Chem. Int. Ed. 2008; 47: 6634 ; Angew. Chem. 2008, 120: 6736
- 32 Mase N, Barbas CF. Org. Biomol. Chem. 2010; 8: 4043
- 33 Ding X, Vera MD, Liang B, Zhao Y, Leonard MS, Joullié MM. Bioorg. Med. Chem. Lett. 2001; 11: 231
- 34 dos Santos DA, Deobald AM, Cornelio VE, Ávila RM. D, Cornea RC, Bernasconi GC. R, Paixão MW, Vieira PC, Corrêa AG. Bioorg. Med. Chem. 2017; 25: 4620
- 35 Silva TL, dos Santos DA, de Jesus HC. R, Brömme D, Fernandes JB, Paixão MW, Corrêa AG, Vieira PC. Bioorg. Med. Chem. 2020; 28: 115597
- 36 Moreira JA, Neppe T, De Paiva MM, Deobald AM, Batista-Pereira LG, Paixão MW, Corrêa AG. J. Braz. Chem. Soc. 2013; 24: 1933
- 37a Yan L, Wu X, Liu H, Xie L, Jiang Z. Mini-Rev. Med. Chem. 2013; 13: 845
- 37b Hosokawa S. Tetrahedron Lett. 2018; 59: 77
- 38 Bracegirdle J, Stevenson LJ, Sharrock AV, Page MJ, Vorster JA, Owen JG, Ackerley DF, Keyzers RA. J. Nat. Prod. 2021; 84: 544
- 39 Gęgotek A, Skrzydlewska E. Antioxidants 2022; 11: 1993
- 40 Prasad KR, Gandi VR. Tetrahedron: Asymmetry 2010; 21: 275
- 41 Mao B, Fañanas-Mastral M, Feringa BL. Chem. Rev. 2017; 117: 10502
- 42 Miao S, Andersen RJ. J. Org. Chem. 1991; 56: 6275
- 43 Zhu K, Hu S, Liu M, Peng H, Chen FE. Angew. Chem. Int. Ed. 2019; 58: 9923
- 44 Vieira LC. C, Matsuo BT, Martelli LS. R, Gall M, Paixão MW, Corrêa AG. Org. Biomol. Chem. 2017; 15: 6098
- 45 Jew SS, Park HG. Chem. Commun. 2009; 7090
- 46 Röper S, Franz MH, Wartchow R, Hoffmann HM. R. Org. Lett. 2003; 5: 2773
- 47 Vakulya B, Varga S, Csámpai A, Soós T. Org. Lett. 2005; 7: 1967
- 48 Brunner H, Bügler J, Nuber B. Tetrahedron: Asymmetry 1995; 6: 1699
- 49 Kacprzak K, Gierczyk B. Tetrahedron: Asymmetry 2010; 21: 2740
- 50 Marshall CM, Federice JG, Bell CN, Cox PB, Njardarson JT. J. Med. Chem. 2024; 67: 11622
- 51 Lu P. Tetrahedron 2010; 66: 2549
- 52 Kang S, Moon HK, Yoon HJ. Macromolecules 2018; 51: 4068
- 53 Wang C. Synthesis 2017; 49: 5307
- 54 Fürmeier S, Metzger JO. Eur. J. Org. Chem. 2003; 649
- 55 Singh GS, Sudheesh S, Keroletswe N. ARKIVOC 2018; (i): 50
- 56 Prabhakar S, Sousa JA, Lobo AM. Tetrahedron Lett. 1996; 37: 3183
- 57 Córdova A, Veseley J, Ibrahem I, Zhao G, Rios R. Angew. Chem. Int. Ed. 2007; 46: 778
- 58 Gasperi T, Roma E, Tosi E, Miceli M. Asian J. Org. Chem. 2018; 7: 2357
- 59 Liu QH, Liu J, Han YP, Liang YM, Peng LZ. Eur. J. Org. Chem. 2025; 28: e202401048
- 60 Dos Santos DA, Da Silva AR, Ellena J, Da Silva CC. P, Paixão MW, Corrêa AG. Synthesis 2020; 52: 1076
- 61 Caruano J, Muccioli GG, Robiette R. Org. Biomol. Chem. 2016; 14: 10134
- 62 Szulc BR, Sil BC, Ruiz A, Hilton ST. Eur. J. Org. Chem. 2015; 7438
- 63 Martelli G, Monsignori A, Orena M, Rinaldi S. Curr. Org. Chem. 2014; 18: 1539
- 64 Hu Z, Zhu Y, Fu Z, Huang W. J. Org. Chem. 2019; 84: 10328
- 65 Ong M, Arnold M, Walz AW, Wahl JM. Org. Lett. 2022; 24: 6171
- 66 da Silva AR, dos Santos DA, Paixão MW, Corrêa AG. Molecules 2019; 24: 630
- 67 Capitta F, Frongia A, Ollivier J, Piras PP, Secci F. Synlett 2011; 89
- 68 Martelli LS. R, Silva OA. M, Schpector JZ, Corrêa AG. Org. Biomol. Chem. 2023; 21: 9128
- 69a Chu S, Zhang J. Acta Pharm. Sin. B 2014; 4: 417
- 69b Tanda K, Toyao A, Watanabe A, Sakamoto M, Yamasaki T. Synlett 2014; 25: 2953
- 70 Chen Y, Su L, Yang X, Pan W, Fang H. Tetrahedron 2015; 71: 9234
- 71 Kaln M, Gabko P, Bella M, Ko M. Molecules 2021; 26: 4024
- 72 Monteiro J, Pieber LB, Corrêa AG, Kappe CO. Synlett 2016; 27: 83
- 73 Prevet H, Flipo M, Roussel P, Deprez B, Willand N. Tetrahedron Lett. 2016; 57: 2888
- 74 Konnert L, Reneaud B, Figueiredo RM, Campange JM, Lamaty F, Martinez J, Colacino E. J. Org. Chem. 2014; 79: 10123
- 75 Pavlovi RZ, Smit BM. Tetrahedron 2015; 71: 1101
- 76 Clavette C, Leckett K, Beauchemin AM. Chem. Eur. J. 2015; 21: 3886
- 77 Monteiro JL, Moreira NM, Dos Santos DA, Paixão MW, Corrêa AG. Pure Appl. Chem. 2018; 90: 121
- 78 Furniel LG, Corrêa AG. ChemPhotoChem 2024; 8: e202400120