RSS-Feed abonnieren
DOI: 10.1055/a-2536-9046
Synthesis of Nonnatural Amino Acid Derivatives with Ni Complexes and Investigation of the Antifungal Activity of Their Dipeptide Derivatives
This work was supported by the State Committee of Science MES RA, in the framework of research projects nos. 21T-1D157 and 24RL-1D041.

Abstract
A convenient synthesis of optically pure (S)-2-amino-3-(1-benzyl-1H-1,2,3-triazol-5-yl)-2-methylpropanoic acids via propargylated amino acids is reported. An (S)-2-amino-2-methylpent-4-ynoic acid–Ni–N-(2-benzoylphenyl)-1-benzyl-l-prolinamide complex was prepared and then functionalized by click-coupling reactions to give the corresponding (S)-2-amino-3-(1-benzyl-1H-1,2,3-triazol-5-yl)-2-methylpropanoic acid Ni complexes. Subsequently, these Ni complexes were cleaved to obtain the free (S)-2-amino-3-(1-benzyl-1H-1,2,3-triazol-5-yl)-2-methylpropanoic acids with excellent optical purities. Next, by using the activated ester method for peptide synthesis, N-Fmoc-(S)-(2-amino-3-(1-benzyl-1H-1,2,3-triazol-4-yl)-2-methylpropanoyl)glycine dipeptide was prepared. The nonnatural amino acids and dipeptides were tested for their biological activity and showed a selective high inhibitory activity against fungi.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2536-9046.
- Supporting Information
Publikationsverlauf
Eingereicht: 18. Januar 2025
Angenommen nach Revision: 10. Februar 2025
Accepted Manuscript online:
10. Februar 2025
Artikel online veröffentlicht:
26. März 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Dheer D, Singh V, Shankar R. Bioorg. Chem. 2017; 71: 30
- 2 Matin MM, Matin P, Rahman MR, Hadda TB, Almalki FA, Mahmudi S, Ghoneim MM, Alruwaily M, Alshehri S. Front. Mol. Biosci. 2022; 9: 864286
- 3 El Malah T, Nour HF, Satti AA. E, Hemdan BA, El-Sayed WA. Molecules 2020; 25: 790
- 4 Liang T, Sun X, Li W, Hou G, Gao F. Front. Pharmacol. 2021; 12: 661173
- 5 Saito A, Shibasaki M. Org. Lett. 2024; 26: 7546
- 6 Li J, He Y, Wang L, Li G, Zou Y, Yan Y, Li D, Song Z, Shi X. RSC Adv. 2020; 10: 41921
- 7 Motornov V, Beier P. RSC Adv. 2023; 13: 34646
- 8 Vaishnani MJ, Bijani S, Rahamathulla M, Baldaniya L, Jain V, Thajudeen KY, Ahmed MM, Farhana SA, Pasha I. Green Chem. Lett. Rev. 2024; 17: 2307989
- 9 Song N, Zhang L, Ding S. Polym. Chem. 2024; 15: 2913
- 10 Almalki AS. A, Nazreen S, Malebari AM, Ali NM, Elhenawy AA, Alghamdi AA. A, Ahmad A, Alfaifi SY. M, Alsharif MA, Alam MM. Pharmaceuticals 2021; 14: 866
- 11 Chi T.-C, Yang P.-C, Hung S.-K, Wu H.-W, Wang H.-C, Liu H.-K, Liu L.-W, Chou H.-H. J. Org. Chem. 2024; 89: 5401
- 12 Kumar N, Ansari MY, Kant R, Kumar A. Chem. Commun. 2018; 54: 2627
- 13 Shang J.-Q, Fu H, Li Y, Yang T, Gao C, Li Y.-M. Tetrahedron 2019; 75: 253
- 14 Khaleghi N, Esmkhani M, Noori M, Dastyafteh N, Ghomi MK, Mahdavi M, Sayahi MH, Javanshir S. Nanoscale Adv. 2024; 19: 2337
- 15 De Nino A, Maiuolo L, Costanzo P, Algieri PC. D, Jiritano A, Olivito F, Tallarida MA. Catalysts 2021; 11: 1120
- 16 Shiri P, Amani AM, Mayer-Gall T. Beilstein J. Org. Chem. 2021; 17: 1600
- 17 Hall C, Wolfe H, Wells A, Chien H.-C, Colas C, Schlessinger A, Giacomini KM, Thomas AA. Bioorg. Med. Chem. Lett. 2019; 29: 2254
- 18 Rao BL. M, Nowshuddin S, Jha A, Divi MK, Rao MN. A. Tetrahedron Lett. 2016; 57: 4220
- 19 Parpart S, Petrosyan A, Shah SJ. A, Adewale RA, Ehlers P, Grigoryan T, Mkrtchyan AF, Mardiyan ZZ, Karapetyan AJ, Tsaturyan AH, Saghyan AS, Iqbal J, Langer PS. RSC Adv. 2015; 5: 107400
- 20 Parpart S, Mardiyan ZZ, Ehlers P, Petrosyan A, Mkrtchyan AF, Saghyan AS, Langer P. Synlett 2018; 29: 793
- 21 Saghyan AS, Mkrtchyan AF, Mardiyan ZZ, Hayriyan LA, Belokon YN, Langer P. ChemistrySelect 2019; 4: 4686
- 22 Saghyan AS, Mkrtchyan AF, Mardiyan ZZ, Hayriyan LA, Karapetyan AJ, Belokon YN, Ehlers P, Langer P. ChemistrySelect 2019; 4: 13806
- 23 Gugkaeva ZT, Mardiyan ZZ, Smol’yakov AF, Poghosyan AS, Saghyan AS, Maleev VI, Larionov VA. Org. Lett. 2022; 24: 6230
- 24 Hakobyan HI, Jamgaryan SM, Sargsyan AS, Danghyan YM, Larionov VA, Maleev VI, Saghyan AS, Mardiyan ZZ. Symmetry 2023; 15: 1924
- 25 Hakobyan H, Mardiyan Z, Khachaturyan N, Gevorgyan S, Jamgaryan S, Gyulumyan E, Danghyan Y, Sargsyan T, Saghyan A. Farmacia (Bucharest, Rom.) 2022; 70: 1148
- 26 Larionov VA, Adonts HV, Gugkaeva ZT, Smol’yakov AF, Saghyan AS, Miftakhov MS, Kuznetsova SA, Maleev VI, Belokon YN. ChemistrySelect 2018; 3: 3107
- 27 Wang G, Li X, Wang Z. Nucleic Acids Res. 2016; 44: D1087
- 28 Complexes 4a–e; General Procedure CuI (0.109 mmol) and i-Pr2NH (5.45 mmol) were added to a solution of the appropriate benzylic azide (1.3 mmol) in DMSO (4 mL), and the mixture was stirred for 20–30 min at r.t. Ni complex 3 (1.09 mmol) was then added, and the mixture was stirred at 80 °C under an inert atmosphere for 7–8 h until the starting material was consumed (TLC). The mixture was cooled to r.t., diluted with CH2Cl2, and washed with H2O (×2). The organic layer was dried (Na2SO4), filtered, and concentrated under reduced pressure, and the residue was purified by column chromatography [silica gel, EtOAc–acetone (5:1)]. Amino Acids 5a–e; General Procedure The appropriate nickel complex 4a–e (0.4–1.1 mmol) was dissolved in MeOH (10–15 mL) and H2O (5.0 mL) and 12 M aq HCl (1.50 mL) were added. The resulting mixture was stirred and heated at 60 °C for 40 min, while its color changed from red to green. The mixture was cooled to r.t., diluted with H2O, and extracted with CH2Cl2 (×4). The aqueous layer was treated with 6% aq NH3 to adjust its pH to 1. The amino acid was separated from the mixture by using a cation-exchange column (Dowex+) to give a white solid. (2S)-2-Amino-3-(1-benzyl-1H-1,2,3-triazol-4-yl)-2-methylpropanoic Acid (5a) Prepared from 4a (520 mg, 0.761 mmol) as a white solid; yield: 170 mg (0.653 mmol, 86%; ee > 99%); mp 155–157 °C, [α]D 20 +14.569 (c 0.151, 6 M aq HCl). 1H NMR (300 MHz, DMSO): δ = 7.92 (s, 1 H), 7.36–7.25 (m, 5 H), 5.53 (s, 2 H), 3.29 (d, J = 15.0 Hz, 1 H), 3.23 (d, J = 15.0 Hz, 1 H), 1.58 (s, 3 H). 13C NMR (75 MHz, DMSO): δ = –171.63, 135.49, 128.41, 127.84, 124.43, 116.54, 112.74, 58.69, 53.0, 32.37, 21.8. Anal. Calcd for C13H16N4O2 (260.29): C, 59.99; H, 6.20; N, 21.52. Found: C, 60.05; Н, 59.98; N, 21.40.