Subscribe to RSS
DOI: 10.1055/a-2550-8091
Organophosphoric Acid Catalyzed Cyclization–Aromatization of 3-Vinylindoles and 2-Vinylpyridines to Access C3N2 Carbazole–Pyridine Frameworks
We gratefully acknowledge the financial support from the National Natural Science Foundation of China (22471189), the Natural Science Foundation of Zhejiang Province (LY22B020003), the Taizhou Science and Technology Project (24gya02), and the Liaoning Provincial Department of Education Basic Research Projects for Colleges and Universities (LJ212410149003).

Abstract
A practical, organophosphoric acid-catalyzed, two-component cyclization–aromatization reaction of 3-vinylindoles with 2-vinylpyridines has been established for the efficient assembly of various functionalized 1-pyridin-2-yl-9H-carbazole skeletons. This transformation involves an organophosphoric acid-catalyzed [4+2] cycloaddition reaction, together with a tandem oxidative aromatization process. This synthetic methodology, characterized by mild reaction conditions, outstanding functional-group tolerance, and a scalable synthesis capability, has the potential to support in-depth explorations in the fields of materials science and biomedicine.
Key words
phosphoric acid catalysis - vinylindoles - vinylpyridines - [4+2] cycloaddition - oxidative aromatization - pyridinylcarbazolesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2550-8091.
- Supporting Information
- CIF File
Publication History
Received: 07 January 2025
Accepted after revision: 04 March 2025
Accepted Manuscript online:
04 March 2025
Article published online:
29 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Bourget-Merle L, Lappert MF, Severn JR. Chem. Rev. 2002; 102: 3031
- 1b Mudadu MS, Singh AN, Thummel RP. J. Org. Chem. 2008; 73: 6513
- 1c Blacquiere JM. ACS Catal. 2021; 11: 5416
- 2a Do DC. H, Keyser A, Protchenko AV, Maitland B, Pernik I, Niu H, Kolychev EL, Rit A, Vidovic D, Stasch A, Jones C, Aldridge S. Chem. Eur. J. 2017; 23: 5830
- 2b Cheng J, Wang L, Wang P, Deng L. Chem. Rev. 2018; 118: 9930
- 3a Zhao X, Hou Y, Liu L, Zhao J. Energy Fuels 2021; 35: 18942
- 3b Zhang J, Ju L, Tang Z, Zhang S, Zhang G, Wang W. ACS Appl. Nano Mater. 2024; 7: 24653
- 4a Más-Montoya M, Montenegro MF, Ferao AE, Tárraga A, Rodríguez-López JN, Curiel D. Org. Lett. 2020; 22: 3356
- 4b Baumes JM, Gassensmith JJ, Giblin J, Lee J.-J, White AG, Culligan WJ, Leevy WM, Kuno M, Smith BD. Nat. Chem. 2010; 2: 1025
- 5a Jin J.-L, Li H.-B, Geng Y, Wu Y, Duan Y.-A, Su Z.-M. ChemPhysChem 2012; 13: 3714
- 5b Araneda JF, Piers WE, Heyne B, Parvez M, McDonald R. Angew. Chem. Int. Ed. 2011; 50: 12214
- 5c Liu Y, Yang L, Ma C, Tang A. Dyes Pigm. 2020; 173: 107981
- 5d Más-Montoya, Alcaraz AG, Ferao AE, Bautista D, Curiel D. Dyes Pigm. 2023; 209: 110924
- 6 Kim S, Ko S, Kim M, Ye J, Yoo B, Lee H, Hwang J. EP 3461829, 2019
- 7a Kong RY, Parry JB, Anello GR, Ong ME, Lancaster KM. J. Am. Chem. Soc. 2023; 145: 24136
- 7b Zhang G, Cai X, Jia J, Feng B, Yang K, Song Q. ACS Catal. 2023; 13: 9502
- 7c Zhao M, Ren F, Zhou Y. Chem. Eur. J. 2024; 30: e202401784
- 8a Moustakim M, Riedel K, Schuller M, Gehring AP, Monteiro OP, Martin SP, Fedorov O, Heer J, Dixon DJ, Elkins JM, Knapp S, Bracher F, Brennan PE. Bioorg. Med. Chem. 2018; 26: 2965
- 8b Yamamoto K, Matsui S, Kato S.-i, Nakamura Y. Org. Biomol. Chem. 2023; 21: 5398
- 8c Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 8d Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
- 9a Negishi E.-i, King AO, Okukado N. J. Org. Chem. 1977; 42: 1821
- 9b Negishi E.-i. Angew. Chem. Int. Ed. 2011; 50: 6738
- 10a Sridharan V, Martín MA, Menéndez JC. Synlett 2006; 2375
- 10b Liégault B, Lee D, Huestis MP, Stuart DR, Fagnou K. J. Org. Chem. 2008; 73: 5022
- 11a Wolfe JP, Wagaw S, Buchwald SL. J. Am. Chem. Soc. 1996; 118: 7215
- 11b Driver MS, Hartwig JF. J. Am. Chem. Soc. 1996; 118: 7217
- 11c Forero-Cortés PA, Haydl AM. Org. Process Res. Dev. 2019; 23: 1478
- 12 Kumar S, Jyoti J, Gupta D, Singh G, Kumar A. SynOpen 2023; 7: 580
- 13 Hu Z, Men Y, Xu Z, Wu T, Xu X, Tang B. Org. Chem. Front. 2020; 7: 3720
- 14a Meek JS, Merrow RT, Cristol SJ. J. Am. Chem. Soc. 1952; 74: 2667
- 14b Doering W. vonE, Rhoads SJ. J. Am. Chem. Soc. 1953; 75: 4738
- 14c Davis AE, Lowe JM, Hilinski MK. Chem. Sci. 2021; 12: 15947
- 15a Xia W, An Q.-J, Xiang X.-H, Li S, Wang Y.-B, Tan B. Angew. Chem. Int. Ed. 2020; 59: 6775
- 15b Lu D.-L, Chen Y.-H, Xiang S.-H, Yu P, Tan B, Li S. Org. Lett. 2019; 21: 6000
- 16 CCDC 2349792 contains the supplementary crystallographic data for compound 3a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 17 1-Pyridin-2-ylcarbazoles 3a–x; General Procedure A tube was charged with the appropriate vinylindole 1 (0.1–0.2 mmol, 1.0 equiv), vinylpyridine 2 (0.11–0.22 mmol, 1.1 equiv), catalyst C3 (10–20 mmol%), and chloranil (0.25–0.5 mmol, 2.5 equiv). The tube was then evacuated and refilled three times with N2. Toluene (2–4 mL) was added, and the mixture was stirred at 40–60 °C for 18–72 h until the reaction was complete (TLC). The mixture was then concentrated under reduced pressure and the residue was purified by column chromatography. Methyl 1-Pyridin-2-yl-9H-carbazole-3-carboxylate (3a) White solid; yield: 93% (0.1 mmol scale) or 94% (5 mmol scale). 1H NMR (400 MHz, CDCl3): δ = 11.58 (s, 1 H), 8.72 (s, 1 H), 8.66–8.65 (d, J = 4.4 Hz, 1 H), 8.57 (s, 1 H), 8.06–8.00 (m, 2 H), 7.73–7.69 (m, 1 H), 7.47 (d, J = 8.1 Hz, 1 H), 7.39 (t, J = 7.6 Hz, 1 H), 7.22–7.14 (m, 2 H), 3.91 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 1167.9, 156.89, 148.5, 141.2, 140.2, 136.9, 126.6, 124.6, 124.6, 123.5, 122.9, 121.8, 120.6, 120.6, 120.2, 120.2, 119.4, 111.5, 52.1. HRMS (ESI-ion trap); m/z [M + Na]+ calcd for C19H14N2NaO2: 325.0953; found: 325.0945.