Subscribe to RSS
DOI: 10.1055/a-2642-9526
Efficient Synthesis of 9,9-Dimethyl-12-aryl-8,9,10,12-tetrahydro-benzo[a]xanthen-11-one Derivatives under Solvent-free Conditions using CeO2-decorated SiO2@Fe3O4 core-shell Nanoparticles
Funding Information The authors received no financial support for the research, authorship, and/or publication of this article.

Abstract
The present study describes the development of a sustainable and efficient methodology for the synthesis of 9,9-dimethyl-12-aryl-8,9,10,12-tetrahydro-benzo[a]xanthen-11-one derivatives employing Fe₃O₄@SiO₂@CeO₂ as a recyclable and environmentally benign nanocatalyst. The nanocatalyst was synthesized via a straightforward co-precipitation technique, and its successful formation and structural integrity were confirmed through powder X-ray diffraction (PXRD), high-resolution transmission electron microscopy (HRTEM), and vibrating sample magnetometry (VSM) analyses. The characterization techniques reveal that the catalyst is in its core–shell structure with a particle size of 20.98 nm, showing ferromagnetic behavior. The catalytic system exhibited excellent performance under solvent-free conditions, delivering the desired products in yields of up to 97%. The protocol demonstrated a broad substrate scope, effectively accommodating a variety of aromatic aldehydes with diverse substituents. The heterogeneous nature of the catalyst facilitated facile separation and reusability up to six consecutive cycles without any significant loss of activity thereby reducing waste generation and minimizing the environmental footprint. Furthermore, the proposed methodology addresses critical limitations associated with conventional synthetic routes, including the formation of undesired by-products, prolonged reaction times, and the use of toxic solvents. This work contributes significantly to the field of green chemistry by offering an environmentally responsible and operationally simple alternative for the synthesis of xanthenone derivatives.
Keywords
Magnetic nanocatalyst - Multicomponent reactions - Core–shell structures - Xanthenone - Green protocolPublication History
Received: 19 April 2025
Accepted after revision: 25 June 2025
Article published online:
07 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Maia M, Resende DISP, Durães F, Pinto MMM, Sousa E. Eur J Med Chem 2021; 210: 113085
- 2 Banerjee AG, Kothapalli LP, Sharma PA. et al. Arab J Chem 2016; 9: S480
- 3 Naseem S, Khalid M, Tahir MN. et al. J Mol Struct 2017; 1143: 235
- 4 Baghernejad B, Fiuzat MJ. Appl Chem Res 2021; 15: 46
- 5 Wang H, Lu L, Zhu S, Li Y, Cai W. Curr Microbiol 2006; 52: 1
- 6 Kapri A, Pant S, Gupta N, Nain S. Pharm Chem J 2022; 56: 461
- 7 Vijayakurup V, Carmela S, Carmelo D, Corrado T, Srinivas P, Gopala S. Life Sci 2012; 91: 1336
- 8 Iniyavan P, Sarveswari S, Vijayakumar V. Tetrahedron Lett 2015; 56: 1401
- 9 Ebaston TM, Nakonechny F, Talalai E, Gellerman G, Patsenker L. Dyes Pigments 2021; 184: 108854
- 10 Nie L, Liu Y. Chen X. In Molecular Imaging. 2nd edn. Ross BD, Gambhir SS. eds Academic Press; 2021: 627
- 11 Seyyedhamzeh M, Mirzaei P, Bazgir A. Dyes Pigments 2008; 76: 836
- 12 Tabatabaeian K, Khorshidi A, Mamaghani M, Dadashi A, Jalali MK. Can J Chem 2011; 89: 623
- 13 Bi Fatemeh Mirjalili B, Bamoniri A, Zamani L. Lett Org Chem 2012; 9: 338
- 14 Pouramiri B, Shirvani M, Tavakolinejad KEJ. Serbian Chem Soc 2017; 82: 483
- 15 Hashemi H, Sardarian AR. Iran J Sci Technol 2013; A1: 75
- 16 Khurana JM, Magoo D. Tetrahedron Lett 2009; 50: 4777
- 17 Jaber ZK, Abbasi SZ, Pooladian B, Jokar M. E-J Chem 2011; 8: 1895
- 18 R T Ghosh A, Limaye AS. et al. Mol Catal 2024; 557: 113978
- 19 Ali R, Han J, Kazemi M, Javahershenas R. ChemistryOpen 2025; e202500041
- 20 Maleki A, Ghalavand R, Firouzi Haji R. Appl Organomet Chem 2018; 32: e3916
- 21 Shinde G, Thakur J. Mon Chem – Chem Mon 2024; 155: 643
- 22 Fallah-Mehrjardi M. Mini-Rev Org Chem 2017; 14: 122
- 23 Shinde G, Thakur J. Res Chem Intermed 2024; 50: 817
- 24 Pascanu V, Bermejo Gómez A, Ayats C. et al. ACS Catal 2015; 5: 472
- 25 Cao S, Zou B, Yang J, Wang J, Feng H. ACS Appl Nano Mater 2022; 5: 11689
- 26 Mayman SA, Zeghayer YA, AlMasry W, AlNashef I, Ramay S, Jbar A. Int J Phys Sci 2012; 7: 6270
- 27 Song S, Wang X, Zhang H. NPG Asia Mater 2015; 7: e179
- 28 Maati H, Amadine O, Essamlali Y. et al. J Mol Struct 2023; 136347
- 29 Nemiwal M, Sillanpää M, Banat F, Kumar D. Inorg Chem Commun 2022; 143: 109739
- 30 Nezhad DK. Iran J Chem Eng. 2019 38
- 31 Shinde G, Thakur J. J Chem Sci 2023; 135: 14
- 32 Wang X, Xing X, Zhang B, Liu F, Cheng Y, Shi D. Int J Nanomed 2014; 9: 1601
- 33 Kalita AJ, Suleman A, Bora J, Dutta M, Chetia B. Tetrahedron 2025; 178: 134582
- 34 Ghasemzadeh MA. Acta Chim Slov. 2015 977
- 35 Amiri-Zirtol L, Amrollahi MA, Mirjalili B-F. Inorg Nano-Met Chem. 2021 1
- 36 Safaei-Ghomi J, Ghasemzadeh MA. Afr J Chem 2014
- 37 Bahrami K, Khodaei MM, Roostaei M. New J Chem 2014; 38: 5515
- 38 Taherpour AA, Yari A, Ghasemhezaveh F, Zolfigol MA. J Iran Chem Soc 2017; 14: 2485
- 39 Amarloo F, Zhiani R, Mehrzad J. Russ J Org Chem 2019; 55: 1584
- 40 Zare Fekri L, Darya-Laal A-R. Polycycl Aromat Compd 2020; 40: 1539
- 41 Sonei S, Gholizadeh M, Taghavi F. Polycycl Aromat Compd 2020; 40: 1127
- 42 Fardood ST, Ramazani A, Moradnia F, Afshari Z, Ganjkhanlua S, Zare FY. Chem Methodol 2019; 3: 696
- 43 Diwan F, Mohsin M, Shaikh M, Dixit P, Farooqui M. Chem Biol Interface. 2019 9
- 44 Balou J, Khalilzadeh MA, Zareyee D. Sci Rep 2019; 9: 3605
- 45 Davoodnia A, Yadegarian S, Nakhaei A, Tavakoli-Hoseini N. Russ J Gen Chem 2016; 86: 2849
- 46 Kulkarni SA, Sawadh PS, Palei PK. J Korean Chem Soc 2014; 58: 100
- 47 Patil SM, Tandon R, Tandon N. ACS Omega 2022; 7: 24190