Subscribe to RSS
DOI: 10.1055/a-2695-8269
Reductive Monocarboxylation of Aryl Alkynes with CO2 via Electrochemistry
Authors
The authors gratefully acknowledge the financial support from the Start-up Fund from Nanjing Tech University (Grant Nos. 39837126).

Abstract
An electrochemical monocarboxylation of aryl alkynes with carbon dioxide to prepare acrylic acids and propionic acids has been developed. In a three-electrode electrochemical system, the reaction proceeds smoothly at a constant current in acetonitrile, which contains tetrabutylammonium bromide, and gives monocarboxylic acid products with up to 72% overall isolated yield. The system is applicable to terminal and internal aryl alkynes, exhibiting good functional group tolerance. This method may open up a window for the application of the electrochemical strategy in the synthesis of monocarboxylic acids from unsaturated hydrocarbons.
Keywords
Electrochemistry - Aryl alkynes - Reductive monocarboxylation - Carbon dioxide - Organic synthesisPublication History
Received: 17 July 2025
Accepted after revision: 04 September 2025
Accepted Manuscript online:
04 September 2025
Article published online:
01 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Sun B, Mi M, Wang S. et al. Engineering 2025; 48: 12-15
- 2 Gill L, Giasson MA, Yu R, Finzi AC. Global Change Bio 2017; 23: 5398-5411
- 3 Zhang K, Wang W, Wang Y. et al. Chem Commun 2023; 59: 14819-14822
- 4 Yin G, Bi Q, Zhao W, Xu J, Lin T, Huang F. ChemCatChem 2017; 9: 4389-4396
- 5 Nguyen HKD, Dang T, Nguyen NLT, Nguyen HT, Dinh NT. Can J Chem Eng 2018; 96: 832-837
- 6 Ding P, Zhao H, Li T. et al. Mater Chem A 2020; 8: 21947-21960
- 7 Liu N, Lu N, Zhao K, Liu P, Sun Z, Lu J. Chem Eng J 2024; 487: 150690
- 8 Goto T, Ito SI, Shinde SL. et al. Commun Chem 2022; 5: 118
- 9 Pappijn CAR, Ruitenbeek M, Reyniers MF, Van Geem KM. Front Energy Res 2020; 8: 8
- 10 Du J, Zhang P, Liu H. Chem Asian J 2021; 16: 588-603
- 11 Luo J, Larrosa I. ChemSusChem 2017; 10: 3317-3332
- 12 Senboku H. Chem Rec 2021; 21: 2354-2374
- 13 Lan J, Lu X, Ren B, Duo F, Niu X, Si J. Org Biomol Chem 2024; 22: 682-693
- 14 Wang L, Zhu Q, Xia G, Liu C. Chin J Org Chem 2016; 36: 2813-2821
- 15 Lee MY, Koo JW, Jang JH. et al. ACS Sustain Chem Eng 2025; 13: 2845-2852
- 16 Mei C, Zhao Y, Chen Q, Cao C, Pang G, Shi Y. ChemCatChem 2018; 10: 3057-3068
- 17 Hong J, Li M, Zhang J, Sun B, Mo F. ChemSusChem 2019; 12: 6-39
- 18 Wen D, Fang W, Liu Y, Tu T. Chin Chem Lett 2024; 35: 109394
- 19 Shaikh TM, Hong FE. Adv Synth Catal 2011; 353: 1491-1496
- 20 D’Amato A, Marco S, Francesco V, Pasquale L, Mariconda A. Inorganics 2024; 12: 283
- 21 Chang Q, Yu C, He N. Mini-Rev Org Chem 2018; 15: 283-290
- 22 Cleare MJ, Hydes PC, Griffith WP, Wright MJJ. Chem Soc: Dalton Trans 1977; 941-944
- 23 Mori M. Eur J Org Chem 2007; 2007: 4981-4993
- 24 Müller P, Godoy J. Helv Chim Acta 1981; 64: 2531-2533
- 25 Shi M, Shen M. J Org Chem 2002; 67: 16-21
- 26 Yu B, Xie N, Zhong L, Li W, He N. ACS Catal 2015; 5: 3940-3944
- 27 Cheng H, Zhao B, Yao Y, Lu C. Green Chem 2015; 17: 1675-1682
- 28 Ye H, Miao M, Huang H. et al. Angew Chem Int Ed 2017; 56: 15416-15420
- 29 Xu C, Yue P, Pan M. et al. Nat Commun 1850; 2025: 16
- 30 Zhao L, Xie J, Meng Z, Li H, He N. Org Lett 2024; 26: 3241-3246
- 31 Gao X, Zhang Z, Wang X. et al. Chem Sci 2020; 11: 10414-10420
- 32 Zhou P, Jiao H, Jing Y. et al. Green Synth Catal. (In press)
- 33 Chen R, Tian K, He D. et al. ACS Appl Energy Mater 2020; 3: 5813-5818