Subscribe to RSS
DOI: 10.1055/a-2735-9268
(E)-Selective Defluorinative Diphenothiazination of Trifluoromethyl Styrenes
Authors
We are thankful to the Chinese Scholarship Council (CSC) for financial support to Y.Y. (No. 202108320082).

Abstract
Alpha-trifluoromethyl styrenes have become a versatile and valuable platform in order to access a wide variety of fluorinated organic motifs over recent years. This is due to their propensity to accommodate diverse defluorinative radical or nucleophilic attacks, which can lead to highly functionalized fluorinated alkenes. In some cases, such as described herein, E/Z selectivity issues can arise. While Zhu showed in 2021 that indole and carbazole nucleophiles lead preferentially to the (Z)-fluoroalkenes, we found that phenothiazines reverse the selectivity toward the (E)-configured diphenothiazinated fluoroalkenes. A scope and diastereoselectivity model for this unexpected reversal is discussed.
Keywords
Phenothiazine - Trifluoromethyl styrene - Fluoroalkene - Defluorinative amination - E/Z selectivityPublication History
Received: 09 September 2025
Accepted: 14 October 2025
Article published online:
01 December 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev 2008; 37: 320
- 1b O’Hagan D. J Fluor Chem 2010; 131: 1071
- 1c Wang J, Sanchez-Rosello M, Acena JL. et al. Chem Rev 2014; 114: 2432
- 1d Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J Med Chem 2015; 58: 8315
- 1e Zhou Y, Wang J, Gu Z. et al. Chem Rev 2016; 116: 422
- 1f Meanwell NA. J Med Chem 2018; 61: 5822
- 2a Chen P, Liu G. Eur J Org Chem 2015; 4295
- 2b Yang Y, Taponard A, Vantourout JC, Tlili A. ACS Org Inorg Au 2023; 3: 364
- 3a Tian F, Yan G, Yu J. Chem Commun 2019; 55: 13486
- 3b Yan G, Qiu K, Guo M. Org Chem Front 2021; 8: 3915
- 3c Zhao F, Zhou W, Zuo Z. Adv Synth Catal 2022; 364: 234
- 3d Li S, Shu W. Chem Commun 2022; 58: 1066
- 3e Ge D, Chu X-Q. Org Chem Front 2022; 9: 2013
- 3f Hooker LV, Bandar JS. Angew Chem Int Ed 2023; 62: e202308880
- 3g Ling J, Zhou L. Chem Rec 2024; 24: e202300332
- 4a Zeng H, Cai Y, Jiang H, Zhu C. Org Lett 2021; 23: 66
- 4b Zeng H, Li H, Li C, Jiang H, Zhu C. Org Chem Front 2022; 9: 1383
- 4c Zeng H, Li H, Jiang H, Zhu C. Sci China Chem 2022; 65: 554
- 4d Peng R, Zhu C. J Org Chem 2025; 90: 1538
- 5a Louillat-Habermeyer M-L, Jin R, Patureau FW. Angew Chem Int Ed 2015; 54: 4102
- 5b Jin R, Bub CL, Patureau FW. Org Lett 2018; 20: 2884
- 5c Patureau FW. ChemCatChem 2019; 11: 5227
- 5d Xiao F, Wang X, Ebel B, Oppel IM, Patureau FW. J Org Chem 2025; 90: 1180
- 6a Ohlow MJ, Moosmann B. Drug Discovery Today 2011; 16: 119
- 6b Treat NJ, Sprafke H, Kramer JW. et al. J Am Chem Soc 2014; 136: 16096
- 6c Pan X, Lamson M, Yan J, Matyjaszewski K. ACS Macro Lett 2015; 4: 192
- 6d Pan X, Fang C, Fantin M. et al. J Am Chem Soc 2016; 138: 2411
- 6e Salunke JK, Wong FL, Feron K. et al. J Mater Chem C 2016; 4: 1009
- 6f Kumar S, Singh M, Jou J-H, Ghosh S. J Mater Chem C 2016; 4: 6769
- 6g Grisorio R, Roose B, Colella S, Listorti A, Suranna GP, Abate A. ACS Energy Lett 2017; 2: 1029
- 6h Li BX, Kim DK, Bloom S. et al. Nat Chem 2021; 13: 902
- 6i Girón-Elola C, Sasiain I, Sánchez-Fernández R, Pazos E, Correa A. Org Lett 2023; 25: 4383
- 6j Pérez-Cubero I, Andrade-Sampedro P, Sasiain I, Correa A. ACS Catal 2025; 15: 10320
- 7a Okada K, Imakura T, Oda M, Murai H, Baumgarten M. J Am Chem Soc 1996; 118: 3047
- 7b Kim MS, Cho MJ, Choi YC. et al. Dyes Pigments 2013; 99: 986
- 7c Xu S, Liu T, Mu Y. et al. Angew Chem Int Ed 2015; 54: 874
- 7d Zhang Z, Gao Y, Liu H. et al. Dyes Pigments 2017; 145: 294
- 7e Wang B, Qiao X, Yang Z. et al. Org Electron 2018; 59: 32
- 7f Wu Q, Braveenth R, Zhang HQ, Bae I-J, Kim M, Chai KY. Molecules 2018; 23: 843
- 7g Liu X-Y, Tang X, Zhao D. et al. Org Electron 2018; 61: 70
- 7h Chen C, Lu H-Y, Wang Y-F, Li M, Shen Y-F, Chen C-F. J Mater Chem C 2019; 7: 4673
- 7i Li W, Huang Q, Yang Z. et al. Angew Chem Int Ed 2020; 59: 22645
- 7j Şahin Y, Çoban EP, Sevinçek R, Bıyık HH, Özgener H, Aygün M. Bioorg Chem 2021; 106: 104494
- 7k Zhang L, Wang Y-F, Li M, Gao Q-Y, Chen C-F. Chin Chem Lett 2021; 32: 740
- 7l Kikushima K, Koyama H, Kodama K, Dohi T. Molecules 2021; 26: 1365
- 7m Meti P, Lee H-S, Gong Y-D. Dyes Pigments 2022; 204: 110402
- 7n Zhao H, Wang X, Hu S, Liang M, Xue P. Cryst Growth Des 2024; 24: 7504
- 8a Liu Y, Zhou Y, Zhao Y, Qu J. Org Lett 2017; 19: 946
- 8b Ma T, Li X, Ping Y, Kong W. Chin J Chem 2022; 40: 2212
- 8c Qiu J, Wang C, Zhou L, Lou Y, Yang K, Song Q. Org Lett 2022; 24: 2446
- 8d Trost BM, Debien L. J Am Chem Soc 2015; 137: 11606
- 8e Wang X, Wang C, Bolm C. Org Lett 2022; 24: 7461
- 8f Yang J-W, Li M, Tan G-Q, Liu F, Qin H-T. Eur J Org Chem 2024; 27: e202400011
- 8g Zhu C, Sun M-M, Chen K, Liu H, Feng C. Angew Chem Int Ed 2021; 60: 20237
- 9 Stoe&Cie, 2024. https://www.stoe.com/
- 10 Sheldrick GM. Acta Cryst A Found Adv 2015; 71: 3
- 11 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. J Appl Crystallogr 2009; 42: 339
- 12 Kleemiss F, Dolomanov OV, Bodensteiner M. et al. Chem Sci 2021; 12: 1675
- 13 Furness JW, Kaplan AD, Ning J, Perdew JP, Sun J. J Phys Chem Lett 2020; 11: 8208
- 14 Neese F, Wennmohs F, Becker U, Riplinger C. J Chem Phys 2020; 152: 224108
- 15 Neese F. WIREs Comput Mol Sci 2022; 12: e1606
- 16 Neese F. J Comput Chem 2003; 24: 1740
- 17 Neese F. J Comput Chem 2023; 44: 381
- 18 Lehtola S, Steigemann C, Oliveira MJT, Marques MAL. SoftwareX 2018; 7: 1
Selected:
Selected:
Selected:
See also:
Selected:
Selected:
Selected: