Subscribe to RSS
DOI: 10.1055/a-2779-0844
Synthesis of β3-Amino Acid Derivatives via the Regioselective Carbozincation of Ynamides and Subsequent Asymmetric Hydrogenation
Authors
This work was partially supported by JSPS KAKENHI (Grant Number 21K06484).

Abstract
β-Amino acids are key constituents of various bioactive molecules, pharmaceuticals, and natural products, thereby highlighting their importance in organic chemistry. A novel synthetic method was developed for β3-amino acid derivatives based on the use of ynamides bearing ester moieties. Initially, the Cu-catalyzed regioselective carbozincation of these ynamides afforded β-aminoacrylic acid esters bearing a substituent at the β-position. Subsequent asymmetric hydrogenation using a rhodium catalyst and the Walphos ligand yielded the corresponding β3-amino acid derivatives.
Keywords
Ynamide - Regioselective carbozincation - Asymmetric hydrogenation - Transition metal-catalyzed synthesis - β3-Amino acid derivativePublication History
Received: 08 November 2025
Accepted after revision: 24 December 2025
Accepted Manuscript online:
24 December 2025
Article published online:
21 January 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Yu JS, Noda H, Shibasaki M. Angew Chem Int Ed 2018; 57: 818
- 2a Juaristi E, Soloshonok VA. Enantioselective Synthesis of Beta-Amino Acids. 2nd ed. Wiley; 2005
- 2b Seebach D, Beck AK, Capone S, Deniau G, Grošelj U, Zass E. Synthesis 2009; 1: 1
- 2c Weiner B, Szymański W, Janssen DB, Minnaard AJ, Feringa BL. Chem Soc Rev 2010; 39: 1656
- 2d Szakonyi Z, Fülöp F. Amino Acids 2011; 41: 597
- 2e Mikami K, Fustero S, Sánchez-Roselló M, Aceña JL, Soloshonok V, Sorochinsky A. Synthesis 2011; 19: 3045
- 2f Kiss L, Fülöp F. Chem Rev 2014; 114: 1116
- 2g Grygorenko OO. Tetrahedron 2015; 71: 5169
- 2h Zeng H-W, Wu P-Y, Wu H-L. Org Biomol Chem 2020; 18: 2991
- 2i Sajjad F, Zhang S, Xu M-H. Synthesis 2025; 57: 891
- 3 Podlech J, Seebach D. Angew Chem Int Ed 1995; 34: 471
- 4a Xu L-W, Xia C-G. Eur J Org Chem 2005; 4: 633
- 4b Enders D, Wang C, Liebich JX. Chem Eur J 2009; 15: 11058
- 4c Rulev AY. Russ Chem Bull, Int Ed 2016; 65: 1687
- 4d Sharma P, Gupta R, Bansal RK. Beilstein J Org Chem 2021; 17: 2585
- 4e Rulev AY. Adv Synth Catal 2023; 365: 1908
- 5a Verkade JMM, van Hemert LJC, Quaedflieg PJLM, Rutjes FPJT. Chem Soc Rev 2008; 37: 29
- 5b Karimi B, Enders D, Jafari E. Synthesis 2013; 45: 2769
- 5c Ting A, Schaus SE. Eur J Org Chem 2007; 5797
- 5d Marques MMB. Angew Chem Int Ed 2006; 45: 348
- 5e Córdova A. Acc Chem Res 2004; 37: 102
- 6a Drexler H-J, You J, Zhang S. et al. Org Proc Res Dev 2003; 7: 355
- 6b Zhang W, Chi Y, Zhang X. Acc Chem Res 2007; 40: 1278
- 6c Sen A, Chikkali SH. Org Biomol Chem 2021; 19: 9095
- 6d Behera P, Ramakrishna DS, Chandrasekhar MM, Kothakapu SR. Chirality 2023; 35: 477
- 7a Cheng J, Qi X, Li M, Chen P, Liu G. J Am Chem Soc 2015; 137: 2480
- 7b Tan G, Das M, Keum H, Bellotti P, Daniliuc C, Glorius F. Nat Chem 2022; 14: 1174
- 7c Ying C-J, Shao Y, Wan Y-C. et al. Chem Commun 2024; 60: 13071
- 7d Kanna W, Harabuchi Y, Tanaka III K. et al. ACS Catal 2025; 15: 12180
- 8 Saito N, Abdulah I, Hayashi K, Hamada K, Koyama M, Sato Y. Org Biomol Chem 2016; 14: 10080
- 9a Zificsak CA, Mulder JA, Hsung RP, Rameshkumar C, Wei L-L. Tetrahedron 2001; 57: 7575
- 9b Mulder JA, Kurtz KCM, Hsung RP. Synlett 2003; 1379
- 9c Hsung RP. Tetrahedron 2006; 62: 3771
- 9d Evano G, Coste A, Jouvin K. Angew Chem Int Ed 2010; 49: 2840
- 9e DeKorver KA, Li H, Lohse AG. et al. Chem Rev 2010; 110: 5064
- 9f Wang X-N, Yeom H-S, Fang L-C. et al. Acc Chem Res 2014; 47: 560
- 9g Lu T, Hsung RP. ARKIVOC 2014; 127
- 9h Cook AM, Wolf C. Tetrahedron Lett 2015; 56: 2377
- 9i Evano G, Blanchard N, Compain G. et al. Chem Lett 2016; 45: 574
- 9j Pan F, Shu C, Ye L-W. Org Biomol Chem 2016; 14: 9456
- 9k Nayak S, Prabagar B, Sahoo AK. Org Biomol Chem 2016; 14: 803
- 9l Lynch CC, Sripada A, Wolf C. Chem Soc Rev 2020; 49: 8543
- 9m Mahe C, Cariou K. Adv Synth Catal 2020; 362: 4820
- 9n Li L, Luo W-F, Ye L-W. Synlett 2021; 1303
- 9o Shandilya S, Gogoi MP, Dutta S, Sahoo AK. Chem Rec 2021; 21: 4123
- 9p Iftikhar R, Mazhar A, Iqbal MS, Khan FZ, Askary SH, Sibtain H. RSC Adv 2023; 13: 10715
- 9q Dutta S, Mallick RK, Sahoo AK. Angew Chem Int Ed 2023; 62: e20230081
- 9r Lenko I, Alayrac C, Bozek I, Witulski B. Molecules 2023; 28: 4564
- 9s Hu L, Zhao J. Acc Chem Res 2024; 57: 855
- 10a Saito N, Katayama T, Sato Y. Org Lett 2008; 10: 3829
- 10b Saito N, Saito K, Shiro M, Sato Y. Org Lett 2011; 13: 2718
- 10c Saito N, Ichimaru T, Sato Y. Org Lett 2012; 14: 1914
- 10d Saito N, Saito K, Sato H, Sato Y. Adv Synth Catal 2013; 355: 853
- 10e Tayu M, Watanabe R, Isogi S, Saito N. Adv Synth Catal 2021; 363: 1147
- 10f Kagami K, Liang X, Ishibashi N, Ohrui S, Tayu M, Saito N. Chem Commun 2023; 59: 8274
- 10g Tayu M, Watanabe R, Shinshima H, Hui Y, Ohrui S, Saito N. Chem Pharm Bull 2025; 73: 732
- 11a Normant JF, Alexakis A. Synthesis 1981; 11: 841
- 11b Lipshutz BH, Sengupta S. Org React 1992; 41: 135
- 11c Negishi E-I, de Meijere A. eds Handbook of Organopalladium Chemistry for Organic Synthesis. Wiley; 2002: 1123
- 11d Marek I, Chinkov N, Banon-Tenne D. Metal-Catalyzed Cross-Coupling Reactions, Second Edition: Chapter 7. Carbometallation Reactions: Wiley-VCH; 2004
- 11e Flynn AB, Ogilvie WW. Chem Rev 2007; 107: 4698
- 11f Ding A, Guo H. Comprehensive Organic Synthesis, Second Edition: 4.13, Carbometalation and Heterometalation Reactions of Alkenes, Alkynes and Allenes. Elsevier; 2014: 891
- 12a Chechik-Lankin H, Livshin S, Marek I. Synlett 2005; 13: 2098
- 12b Gourdet B, Smith DL, Lam HW. Tetrahedron 2010; 66: 6026
- 12c Campbell CD, Greenaway RL, Holton OT. et al. Chem Eur J 2015; 21: 12627
- 12d Sallio R, Corpet M, Habert L, Durandetti M, Gosmini C, Gillaizeau I. J Org Chem 2017; 82: 1254
- 12e Lingua H, Vibert F, Mouysset D, Siri D, Bertrand MP, Feray L. Tetrahedron 2017; 73: 3415
- 12f Sandeep K, Reddy AS, Kumara Swamy KC. Org Biomol Chem 2021; 19: 6871
- 12g You C, Sakai M, Daniliuc CG, Bergander K, Yamaguchi S, Studer A. Angew Chem Int Ed 2021; 60: 21697
- 12h Vanjari R, Dutta S, Yang S, Gandon V, Sahoo AK. Org Lett 2022; 24: 1524
- 12i Agbaria M, Egbaria N, Nairoukh Z. Chem Sci 2024; 15: 19136
- 13a Gourdet B, Lam HW. J Am Chem Soc 2009; 131: 3802
- 13b Gourdet B, Rudkin ME, Watts CA, Lam HW. J Org Chem 2009; 74: 7849
- 13c Takimoto M, Gholap SS, Hou Z. Chem Eur J 2015; 21: 15218
- 13d Takimoto M, Gholap SS, Hou Z. Chem Eur J 2019; 25: 8363
- 14a Stüdemann T, Ibrahim-Ouali M, Knochel P. Tetrahedron 1998; 54: 1299
- 14b Nishikawa T, Yorimitsu H, Oshima K. Synlett 2004; 9: 1573
- 14c Yasui H, Nishikawa T, Yorimitsu H, Oshima K. Bull Chem Soc Jpn 2006; 79: 1271
- 14d Sklute G, Bolm C, Marek I. Org Lett 2007; 9: 1259
- 14e Murakami K, Yorimitsu H, Oshima K. Org Lett 2009; 11: 2373
- 14f Tarwade V, Liu X, Yan N, Fox JM. J Am Chem Soc 2009; 131: 5382
- 14g Murakami K, Yorimitsu H, Oshima K. Chem Eur J 2010; 16: 7688
- 14h Krämer K, Leong P, Lautens M. Org Lett 2011; 13: 819
- 14i Corpet M, Gosmini C. Chem Commun 2012; 48: 11561
- 14j Murakami K, Yorimitu H. Beilstein J Org Chem 2013; 9: 278
- 14k Müller DS, Marek I. J Am Chem Soc 2015; 137: 15414
- 14l Wu J, Yoshikai N. Angew Chem Int Ed 2016; 55: 336
- 14m Zhang C, Hu W, Lovinger GJ, Jin J, Chen J, Morken JP. J Am Chem Soc 2021; 143: 14189
- 14n Huang Q, Su Y-X, Sun W, Hu M-Y, Wang W-N, Zhu S-F. J Am Chem Soc 2022; 144: 515
- 14o Meng H, Bai S, Qiao Y, He T, Li W, Ming J. Org Lett 2022; 24: 5480
- 14p Li L-J, Zhang Q, He P, Huang M-Y, Zhu S-F. Nat Commun 2025; 16: 7161
- 15 Yamamoto Y, Kirai N, Harada Y. Chem Commun 2008; 2010
- 16 The stereochemistry of 5a was determined through analysis of the 1H NMR chemical shifts and coupling constants, as well as NOE (Nuclear Overhauser Effect) difference spectrometry. See Supporting Information
- 17a Maury J, Feray L, Bertrand MP. Org Lett 2011; 13: 1884
- 17b Cheung CW, Hu X. Chem Eur J 2015; 21: 18439
- 17c Nishimoto Y, Kang K, Yasuda M. Org Lett 2017; 19: 3927
- 18 The major product was identified as the α-ethyl-substituted regioisomer of 5g (54% yield), generated via syn-selective carbozincation as reported previously (Ref. 13)
- 19 The stereochemistry of 8a was determined through analysis of the NOE (Nuclear Overhauser Effect) difference spectrometry. See Supporting Information
For reviews on the synthesis of β-amino acid derivatives, see:
For reviews on the chemistry of ynamides, see:
For our reports on transition-metal-promoted transformations of ynamides, see:
For reviews on carbometalation of alkynes, see:
For examples of carbometalation with ynamide, see:
For examples of carbozincation with ynamides, see:
For examples of carbozincation, see: