Subscribe to RSS
DOI: 10.1055/a-2791-3501
Catalytic Asymmetric Construction of Medium-Sized Ring Systems with Single Axial or Inherent Chiral Element
Authors
We acknowledge the National Natural Science Foundation of China (22201071), Natural Science Foundation of Hunan Province (2023JJ10027), Scientific Research Fund of Hunan Provincial Education Department (22A0048), Science and Technology Planning Project of Hunan Province (2018TP1017).
Supported by: Scientific Research Fund of Hunan Provincial Education Department 22A0048 Supported by: Natural Science Foundation of Hunan Province 2023JJ10027 Supported by: National Natural Science Foundation of China 22201071

Abstract
Inherently and axially chiral medium-sized cyclic compounds play an essential role across multiple domains—from medicinal chemistry and advanced materials to asymmetric catalysis—due to their unique structural and functional properties. With rapid innovation in synthetic methodologies over recent years, this review provides a systematic summary and discussion of representative advances in the synthesis of medium-sized ring systems featuring single axial or inherent chirality.
Keywords
Axial chirality - Inherent chirality - Asymmetric catalysis - Medium-ring systems - OrganocatalysisPublication History
Received: 08 December 2025
Accepted after revision: 16 January 2026
Article published online:
04 February 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Shiina I. Chem Rev 2007; 107: 239
- 1b Hu Y-J, Li L-X, Han J-C, Min L, Li C-C. Chem Rev 2020; 120: 5910
- 1c Yao T, Li J, Jiang C, Zhao C. Chem Catal 2022; 2: 2929
- 1d Tan W, Zhang J, Gao C, Shi F. Sci China Chem 2023; 66: 966
- 2a Jia S, Hao Y, Li Y, Lan Y. Nat Rev Chem 2025; 9: 617
- 2b Cai L, Chen J, Zhu Y, Yang G, Gua S. Adv Synth Catal 2025; 367: e70020
- 2c Zhu K, Spring DR, Shi B-F, Zhang F. Chem Soc Rev 2025; 54: 10856
- 2d Kotwal N, Tamanna, Chauhan P. Chem Commun 2022; 58: 11031
- 2e Qu B, He L, Shi J, Lu L, Xiao W. Sci Sin Chim 2023; 53: 402
- 2f Luo Y, Luo S, Zhu Q. J Org Chem 2025; 90: 5307
- 2g Bringmann G, Gulder T, Gulder TAM, Breuning M. Chem Rev 2011; 111: 563
- 3 Jiang H-L, Luo X-H, Wang X-Z. et al. Fitoterapia 2012; 83: 1275
- 4 Chobanian HR, Guo Y, Liu P. et al. Bioorg Med Chem 2012; 20: 2845
- 5 Luo Y, Wang X, Hu W. et al. CCS Chem 2023; 5: 982
- 6a Uraguchi D, Terada M. J Am Chem Soc 2004; 126: 5356
- 6b Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew Chem Int Ed 2004; 43: 1566
- 6c Parmar D, Sugiono E, Raja S, Rueping M. Chem Rev 2014; 114: 9047
- 6d Zhang Y-C, Jiang F, Shi F. Acc Chem Res 2020; 53: 425
- 6e Akiyama T, Mori K. Chem Rev 2015; 115: 9277
- 7a Takaishi K, Hinoide S, Matsumoto T, Ema T. J Am Chem Soc 2019; 141: 11852
- 7b Tian J, He Y, Li J, Wei J, Li G, Guo J. Adv Opt Mater 2018; 6: 1701337
- 8a Liu L, Fang W-H, Martinez TJ. J Am Chem Soc 2023; 145: 6888
- 8b Zhang Y, Chang Z, Zhao H, Crespi S, Feringa BL, Zhao D. Chem 2020; 6: 2420
- 8c Kassem S, Leeuwen T v, Lubbe AS, Wilson MR, Feringa BL, Leigh DA. Chem Soc Rev 2017; 46: 2592
- 8d Greb L, Lehn J-M. J Am Chem Soc 2014; 136: 13114
- 9a Zhu B, Yuan W, Tu T. et al. Org Lett 2025; 27: 1250
- 9b Xue X, Gu Z. Org Lett 2019; 21: 3942
- 9c Chen S, Mu D, Mai P-L, Ke J, Li Y, He C. Nat Commun 2021; 12: 1249
- 9d Hu H, Peng Y, Yu T, Cheng S, Luo S, Zhu Q. Org Lett 2021; 23: 3636
- 9e Zhang Y, Liu Y-Q, Hu L, Zhang X, Yin Q. Org Lett 2020; 22: 6479
- 9f Yang T, Guo X, Yin Q, Zhang X. Chem Sci 2019; 10: 2473
- 9g Mondal A, Shivangi, Tung P, Wagulde SV, Ramasastry SSV. Chem Commun 2021; 57: 9260
- 9h Kotwal N, Tamanna, Changotra A, Chauhan P. Org Lett 2023; 25: 7523
- 9i Butt HM, Wei S, Wang Y, Qu J, Wang B. Tetrahedron 2021; 87: 153510
- 9j France SP, Aleku GA, Sharma M. et al. J Angew Chem Int Ed 2017; 56: 15589
- 9k Zhang S, Chen F, He Y-M, Fan Q-H. Org Lett 2019; 21: 5538
- 9l Li Q, Xu Y-Y, Feng B-X, Wang T, Wang Y-Q. Org Chem Front 2024; 11: 4829
- 9m Zhao Z-B, Shi L, Li Y, Meng F-J, Zhou Y-G. Org Biomol Chem 2019; 17: 6364
- 9n Liu J, Yang X, Zuo Z, Nan J, Wang Y, Luan X. Org Lett 2018; 20: 244
- 9o Hu W, Wang X, Peng Y, Luo S, Zhao J, Zhu Q. Org Lett 2022; 24: 3642
- 9p Zhang S, Feng Z, Jiang C. et al. Chem Eur J 2021; 27: 11285
- 9q Lu S, Ong J-Y, Yang H. et al. J Am Chem Soc 2019; 141: 17062
- 9r Pira SL, Wallace TW, Graham JP. Org Lett 2009; 11: 1663
- 9s Guo Y, Liu MM, Zhu X, Zhu L, He C. Angew Chem Int Ed 2021; 60: 13887
- 9t Xu D, Zhou G, Liu B, Jia S, Liu Y, Yan H. Angew Chem Int Ed 2025; 64: e202416873
- 9u Hu F, Xia Y. Eur J Org Chem 2023; 26: e202300151
- 9v Nimmagadda SK, Mallojjala SC, Woztas L, Wheeler SE, Antilla JC. Angew Chem Int Ed 2017; 56: 2454
- 9w Crotti S, Di Iorio N, Artusi C, Mazzanti A, Righi P, Bencivenni G. Org Lett 2019; 21: 3013
- 9x Agudo R, Roiban G-D, Reetz MT. J Am Chem Soc 2013; 135: 1665
- 9y Zhu S, Mao J-H, Cheng JK, Xiang S-H, Tan B. Chem 2022; 8: 2529
- 10 Bringmann G, Hinrichs J, Henschel P, Kraus J, Peters K, Peters E-M. Eur J Org Chem 2002; 2002: 1096
- 11 Newton CG, Braconi E, Kuziola J, Wodrich MD, Cramer N. Angew Chem Int Ed 2018; 57: 11040
- 12 Yang X, Wei L, Wu Y, Zhou L, Zhang X, Chi YR. Angew Chem Int Ed 2023; 62: e202211977
- 13 Wei L, Li J, Zhao Y. et al. Angew Chem Int Ed 2023; 62: e202306864
- 14 Wei Z, Zhao Y, Wang T. et al. Org Lett 2024; 26: 7110
- 15 Fang Y, Hu J, Sun T, Zhou Y, Luo G, Cao Z-C. ACS Catal 2024; 14: 8176
- 16 Wang C-S, Li T-Z, Liu S-J. et al. Chin J Chem 2020; 38: 543
- 17 Luo Z-H, Wang W-T, Tang T-Y. et al. Angew Chem Int Ed 2022; 61: e202211303
- 18 Tao L-F, Huang F, Zhao X, Qian L, Liao J-Y. Cell Rep Phys Sci 2023; 4: 101697
- 19 Wang S-H, Wei S-Q, Zhang Y. et al. Nat Commun 2024; 15: 4591
- 20 Jia S, Tian Y, Li X, Wang P, Lan Y, Yan H. Angew Chem Int Ed 2022; 61: e202206501
- 21 Liu S-J, Wang X, Yang J-X. et al. Nat Commun 2025; 16: 6605
- 22 Qu B-L, Xiao M, He L. et al. Nat Catal 2025; 8: 368
- 23 Tahara Y-K, Matsubara R, Mitake A, Sato T, Kanyiva KS, Shibata T. Angew Chem Int Ed 2016; 55: 4552
- 24 Li J-H, Li X-K, Feng J. et al. Angew Chem Int Ed 2024; 63: e202319289
- 25 Zhang M-R, Wang H-R, Shan H-M. et al. Nat Commun 2025; 16: 2505
- 26 Wang X, Wang C, Luo Y. et al. Chem Catal. 2024; 4: 100904
- 27 Zhang H, Lu C-J, Cai G-H, Xi L-L, Feng J, Liu R-R. Nat Commun 2024; 15: 3353
- 28a Xu M-Y, Li N, Xiao B. Org Biomol Chem 2025; 23: 7852
- 28b Xu Q-H, Xiao B. Org Chem Front 2022; 9: 7016
- 29 Qian C-G, Yan H, Li J-Y, Zhang Z-S, An Z-L, Xiao B. Org Lett 2025; 27: 4118
- 30 Tampellini N, Mercado BQ, Miller SJ. J Am Chem Soc 2025; 147: 4624
- 31 Shibata T, Chiba T, Hirashima H, Ueno Y, Endo K. Angew Chem Int Ed 2009; 48: 8066
- 32 Luo Y, Cheng S, Peng Y. et al. CCS Chem 2022; 4: 2897
- 33 Zhang D, Zhou J, Qin T, Yang X. Chem Catal 2024; 4: 100827
- 34 Zhou J, Tang M, Yang X. Chin J Chem 2024; 42: 1953
- 35 Guan C-Y, Zou S, Luo C. et al. Nat Commun 2024; 15: 4580
- 36 Shi S-Q, Cui C-C, Xu L-L. et al. Nat Commun 2024; 15: 8474
- 37 Wei L, Chen Y, Zhou Q. et al. J Am Chem Soc 2025; 147: 30747
- 38 Dočekal V, Kurčina A, Císařová I, Veselý J. Chem Sci 2025; 16: 17369
- 39 Chen Y, Lai X, Gong H. et al. Org Lett 2025; 27: 12343
Selected examples for the synthesis of axially and inherently chiral medium-sized cyclic compounds with chiral centers:
Selected examples for the synthesis of axially chiral alkylidenecycloalkanes: