Subscribe to RSS
DOI: 10.1055/s-0029-1216856
A Safe, Convenient and Efficient One-Pot Synthesis of α-Chloroketone Acetals Directly from Ketones Using Iodobenzene Dichloride
Publication History
Publication Date:
29 May 2009 (online)

Abstract
Various ketones, including aliphatic and aromatic ketones, can be directly converted into their corresponding α-chloroketone acetals in high to excellent yields using iodobenzene dichloride in ethylene glycol in the presence of 4 Å molecular sieves at room temperature.
Key words
ketones - iodobenzene - dichloride - halogenation - hypervalent iodine - acetals
- 1a
Billings SB.Woerpel KA. J. Org. Chem. 2006, 71: 5171Reference Ris Wihthout Link - 1b
Montgomery JA.Thomas HJ.Brockman RW.Elliott RD. J. Med. Chem. 1984, 27: 680Reference Ris Wihthout Link - 1c
Treibs W.Grossmann P. Chem. Ber. 1959, 92: 267Reference Ris Wihthout Link - 1d
Wanzliek HW.Gollmer G.Milz H. Chem. Ber. 1955, 88: 69Reference Ris Wihthout Link - 1e
Levin RH.Magerlein BJ.Mcintosh AV.Hanze AR.Fonken GS.Thompson JL.Searcy AM.Scheri MA.Gutsell ES. J. Am. Chem. Soc. 1954, 76: 546Reference Ris Wihthout Link - 2a For
sulfuryl chloride as a chlorinating reagent, see:
Wyman DP.Kaufman PR. J. Org. Chem. 1964, 29: 1956Reference Ris Wihthout Link - 2b For cupric chloride as
a chlorinating reagent, see:
Kochi JK. J. Am. Chem. Soc. 1955, 77: 5274Reference Ris Wihthout Link - 2c For p-toluenesulfonyl
chloride as a chlorinating, see:
Brummond KM.Gesenberg KD. Tetrahedron Lett. 1999, 40: 2231Reference Ris Wihthout Link - 2d For N-chlorosuccinimide
as a chlorinating reagent, see:
Buu-Hoï NP.Demerseman P. J. Org. Chem. 1953, 18: 649Reference Ris Wihthout Link - 2e For tetraethylammonium
trichloride as a chlorinating reagent, see:
Schlama T.Gabriel K.Gouverneur V.Mioskowski C. Angew. Chem., Int. Ed. Engl. 1997, 36: 2342Reference Ris Wihthout Link - 3a
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis 4th ed.: Wiley-Interscience; New York: 1999. Chap. 4.Reference Ris Wihthout Link - 3b
Carlson R.Gautun H.Westerlund A. Adv. Synth. Catal. 2002, 344: 57Reference Ris Wihthout Link - 3c
Chan TH.Brook MA.Chaly T. Synthesis 1983, 203Reference Ris Wihthout Link - 4
Gallucci RR.Going R. J. Org. Chem. 1981, 46: 2532 - 5
Willgerodt C. J. Prakt. Chem. 1886, 33: 154 - 6a
Banks DF. Chem. Rev. 1966, 66: 243Reference Ris Wihthout Link - 6b
Stang PJ.Zhdankin VV. Chem. Rev. 1996, 96: 1123Reference Ris Wihthout Link - 6c
Zhdankin VV.Stang PJ. Chem. Rev. 2002, 102: 2523Reference Ris Wihthout Link - 6d
Wirth T. Angew. Chem. Int. Ed. 2005, 44: 3656Reference Ris Wihthout Link - 6e
Zhdankin VV.Stang PJ. Chem. Rev. 2008, 108: 5299Reference Ris Wihthout Link - 7
Garvey BS.Halley LF.Allen CFH. J. Am. Chem. Soc. 1937, 59: 1827 - 8
Zanka A.Takeuchi H.Kubota A. Org. Process Res. Dev. 1998, 2: 270 - 9a
White P.Breslow R. J. Am. Chem. Soc. 1990, 112: 6842Reference Ris Wihthout Link - 9b
Breslow R. Acc. Chem. Res. 1980, 13: 170Reference Ris Wihthout Link - 10a
Whitfield SR.Sanford MS. J. Am. Chem. Soc. 2007, 129: 15142Reference Ris Wihthout Link - 10b
Bachmann J.Hodgkiss JM.Young ER.Nocera DG. Inorg. Chem. 2007, 46: 607Reference Ris Wihthout Link - 10c
Cotton FA.Koshevoy IO.Lahuerta P.Murillo CA.Sanaú M.Ubeda MA.Zhao QL. J. Am. Chem. Soc. 2006, 128: 13674Reference Ris Wihthout Link - 10d
Bennett MA.Bhargava SK.Bond AM.Edwards AJ.Guo S.-X.Privér SH.Rae AD.Willis AC. Inorg. Chem. 2004, 43: 7752Reference Ris Wihthout Link - 10e
Hayton TW.Legzdins P.Patrick BO. Inorg. Chem. 2002, 41: 5388Reference Ris Wihthout Link - 10f
Bhargava SK.Mohr F.Bennett MA.Welling LL.Willis AC. Organometallics 2000, 19: 5628Reference Ris Wihthout Link - 10g
Witte PT.Meetsma A.Hessen B. Organometallics 1999, 18: 2944Reference Ris Wihthout Link - 10h
Filippou AC.Winter JG.Kociok-Köhn G.Troll C.Hinz I. Organometallics 1999, 18: 2649Reference Ris Wihthout Link - 11a
Dneprovskii AS.Krainyuchenko IV.Temnikova TI. Zh. Org. Khim. 1978, 14: 1514Reference Ris Wihthout Link - 11b
Moskovkina TV.Vysotskii VI. Zh. Org. Khim. 1991, 27: 833Reference Ris Wihthout Link - 11c
Ibrahim H.Kleinbeck F.Togni A. Helv. Chim. Acta 2004, 87: 605Reference Ris Wihthout Link - 12a
Zhao X.-F.Zhang C. Synthesis 2007, 551Reference Ris Wihthout Link - 12b
Li X.-Q.Zhao X.-F.Zhang C. Synthesis 2008, 2589Reference Ris Wihthout Link - 14
Murakami M.Inukai N.Koda A.Nakano K. Chem. Pharm. Bull. 1971, 19: 1696 - 15
Trahanovsky WS.Doyle MP.Mullen PW.Ong CC. J. Org. Chem. 1969, 34: 3679 - 16
Park Y.-D.Kim J.-J.Cho S.-D.Lee S.-G.Falck JR.Yoon Y.-J. Synthesis 2005, 1136 - 17
Motohashi S.Satomi M.Fujimoto Y.Tatsuno T. Synthesis 1982, 1021 - 18
Dinctürk S.Jackson RA.Townson M.Ađirbas H.Billingham NC.March G. J. Chem. Soc., Perkin Trans. 2 1981, 1121
References
One referee surmised that molecular
chlorine might be the active species in our system and advised us
to check this possibility by carrying out the reaction showed in
Scheme
[³]
in the
presence of 4 Å MS. Accordingly, 4′-methylaceto-phenone
was treated with 1.1 equivalents of molecular chlorine in ethylene
glycol in the presence of 4 Å MS at room temperature. After
20 hours, 48% of starting material was recovered and only
7% of the desired cyclic ketal of
α-chloroketone
was obtained, together with 2-methyl-2-p-tolyl-1,3-dioxolane,
which formed as the major product (40%). Apparently, this
result is distinct from that observed with our PhICl2/ethylene
glycol/4 Å MS system under which the same cyclic
ketal of α-chloroketone was obtained in 95% yield
within only 30 minutes (Table
[¹]
,
entry 5). Therefore, we believe that the mechanism shown in Scheme
[¹]
is still preferable.