Subscribe to RSS
DOI: 10.1055/s-0030-1259075
Safe and Efficient Ritter Reactions in Flow
Publication History
Publication Date:
25 November 2010 (online)

Abstract
Efficient mixing, temperature control and small environmental exposures allow reactions carried out in microfluidic devices to perform superior to their batch-type counterparts in conventional flasks. The Ritter reaction has been optimised for flow conditions leading to short reaction times and higher yields and also is more feasible with regards to safety, productivity and tolerance towards substrate functionalities.
Key words
amide - carbocation - microreactor - Ritter Reaction - safety
-
1a
Microreactors in Organic Synthesis and Catalysis
Wirth T. Wiley-VCH; Weinheim: 2008. -
1b
Flash Chemistry
Yoshida J.-I. Wiley; Chichester: 2008. - 2
Bishop R. In Comprehensive Organic Synthesis Vol. 6:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.261-300 - 3
Lebedev MY.Erman MB. Tetrahedron Lett. 2002, 43: 1397 -
4a
Chang S.-J. Org. Process Res. Dev. 1999, 3: 232 -
4b
Baum JC.Milne JE.Murray JA.Thiel OR.
J. Org. Chem. 2009, 74: 2207 -
5a
Sanz R.Martínez A.Guilarte V.Álvarez-Gutierrez JM.Rodrígez F. Eur. J. Org. Chem. 2007, 4642 -
5b
Veverková E.Toma S. Chem. Pap. 2005, 59: 8 - 6
Rubenbauer P.Bach T. Chem. Commun. 2009, 2130 - 7
Baumann M.Baxendale IR.Martin LJ.Ley SV. Tetrahedron 2009, 65: 6611 - 8
Ritter JJ.Minieri PP. J. Am. Chem. Soc. 1948, 70: 4045 - 9
Poechlauer P,Kotthaus M,Vorbach M,Deak M,Zich T, andMarr R. inventors; PCT Int. Appl. WO 2006125502. - 10
Szmant HH. Organic Building Blocks of the Chemical Industry John Wiley & Sons; New York: 1989. - 13
Jirgensons A.Kauss V.Kalvinsh I.Gold MR. Synthesis 2000, 1709 - 14
Ge Y.Hu L. Tetrahedron Lett. 2007, 48: 4585 - 15
Kato T.Reed CA. Angew. Chem. Int. Ed. 2004, 43: 2908 -
16a
Hudson CE.McAdoo DJ. Int. J. Mass Spectrom. 2002, 214: 315 -
16b
Traeger JC.McAdoo DJ.Hudson CE.Giam CS. J. Am. Soc. Mass Spectrom. 1998, 9: 21 -
16c
Bowen RD.Harrison AG. Org. Mass Spectrom. 1981, 16: 180 -
16d
Wendelboe JF.Bowen RD.Williams DH. J. Am. Chem. Soc. 1981, 103: 2333 -
17a
Xu T.Haw JF. J. Am. Chem. Soc. 1994, 116: 7753 -
17b
Lercher JA.van Santen RA.Vinek H. Catal. Lett. 1994, 27: 91 -
17c
Yang S.Kondo JN.Domen K. Chem. Commun. 2001, 2008 -
18a
Boronat M.Corma A. Appl. Catal. A 2008, 336: 2 -
18b
Kotrel S.Knözinger H.Gates BC. Microporous Mesoporous Mater. 2000, 35-36: 11 -
18c
Hunter KC.East ALL. J. Phys. Chem. A 2002, 106: 1346 -
18d
Williams BA.Ji W.Miller JT.Snurr RQ.Kung HH. Appl. Catal. A 2000, 203: 179 - 19
Olah GA.Prakash GKS.Rasul G. Dalton Trans. 2008, 521
References and Notes
The micromixing device ‘Comet X-01’, available from Techno Applications Co., Ltd, 34-16-204, Hon, Denenchofu, Oota, Tokyo 145-0072, Japan, was used.
12Syringe A was loaded with 85% H2SO4 (5
mL). Syringe B was loaded with alcohol (6 mmol) and nitrile (6 mmol), diluted
with acetic acid to 5 mL. The PTFE micromixer and the attached PTFE
tubing (2 m, 0.5 mm inner diameter) were inserted into the heating
bath and the temperature was adjusted to 45 ˚C (85 ˚C
for secondary alcohols). The flow rate was set at 0.1 mL/min
(reaction time: 3 min). The crude product was quenched by dropping
into excess of ice-2 M NaOH. After the reaction, the tube
was flushed with EtOAc and the crude mixture was washed with aq
2 M NaOH (80 mL) and EtOAc (3 × 100 mL). The organic layers
were combined, dried over MgSO4 and the solvent was removed under
reduced pressure.
Selected Spectroscopic
Data:
3,3′-Oxybis[N-(tert-butyl)propanamide] (13): ¹H NMR (500 MHz,
CDCl3): δ = 1.31 (s, 18 H, Me), 2.34
(t, 4 H, J = 6.0 Hz, CH2),
3.66 (t, 4 H, J = 6.0 Hz, CH2),
5.85 (s, 2 H, NH). ¹³C NMR (125 MHz,
CDCl3): δ = 28.8, 37.8, 51.0, 67.1, 170.2.
EI-MS: m/z (%) = 272 [M+](3),
257 (48), 242 (6), 229 (3), 217 (49), 207 (7), 200(100), 183 (18).
HRMS: m/z [M + H]+ calcd
for C14H29N2O3: 273.2173;
found: 273.2177. IR (neat): 3549, 3460, 3330, 3067, 2979, 2927,
2897, 1664, 1639, 1547, 1455, 1361, 1227, 1109 cm-¹.
N-(tert-Butyl)-2-(2-iodophenyl)acetamide
(14): ¹H NMR (500 MHz,
CDCl3): δ = 1.31 (s, 9 H, Me), 3.61
(s, 2 H, CH2), 5.22 (s, 1 H, NH), 6.98 (m, 1 H, ArH),
7.34 (m, 2 H, ArH), 7.86 (d, 1 H, J = 7.7
Hz, ArH). ¹³C NMR (125 MHz, CDCl3): δ = 28.7,
49.6, 51.4, 101.0, 128.8, 128.9, 130.8, 138.8, 139.8, 168.6. EI-MS: m/z (%) = 318 [M+](4),
302 (13), 281 (4), 262 (28), 244 (100), 232 (6). HRMS: m/z [M + H]+ calcd
for C12H17INO: 318.0349; found: 318.0349.
IR (neat): 3378, 3276, 2972, 2960, 1643, 1552, 1466, 1448, 1417,
1360, 1341, 1288, 1259, 1155, 1014 cm-¹.