Synthesis 2011(9): 1365-1374  
DOI: 10.1055/s-0030-1259977
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Manganese(III)-Assisted Specific Intramolecular Addition

Yosuke Ito, Shunsuke Jogo, Noriko Fukuda, Ryo Okumura, Hiroshi Nishino*
Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555, Japan
Fax: +81(96)3423374; e-Mail: nishino@sci.kumamoto-u.ac.jp;
Further Information

Publication History

Received 1 February 2011
Publication Date:
30 March 2011 (online)

Abstract

Oligomethylene-tethered ω-alkenyl 3-oxobutanoates and 3-oxobutanamides underwent manganese(III)-mediated oxidative intramolecular addition to produce dihydrofuran-fused macrolides and macrocyclic amides from 8 to 26 members. A similar reaction of the oligooxamethylene-tethered ω-alkenyl 3-oxobutanoates also gave dihydrofuran-fused crown ether type macrolides which had a phase-transfer ability with sodium and potassium picrates. The manganese(III)-assisted specific intramolecular addition could be explained by the π-complexation of the ω-alkenyl part with the manganese(III) enolate.

    References and Notes

  • 1a Nakamura I. Yamamoto Y. Chem. Rev.  2004,  104:  2127 
  • 1b Jung ME. Piizzi G. Chem. Rev.  2005,  105:  1735 
  • 1c Inoue M. Chem. Rev.  2005,  105:  4379 
  • 2a Baldwin JE. J. Chem. Soc., Chem. Commun.  1976,  734 
  • 2b Johnson CD. Acc. Chem. Res.  1993,  26:  476 
  • 2c Sammes PG. Weller DJ. Synthesis  1995,  1205 
  • 3a Illuminati G. Mandolini L. Acc. Chem. Res.  1981,  14:  95 
  • 3b Casadei MA. Galli C. Mandolini L. J. Am. Chem. Soc.  1984,  106:  1051 
  • 3c Porter NA. Chang VH.-T.
    J. Am. Chem. Soc.  1987,  109:  4976 
  • 3d Roxburgh GJ. Tetrahedron  1993,  49:  10749 
  • 3e Yet L. Tetrahedron  1999,  55:  9349 
  • 3f Yet L. Chem. Rev.  2000,  100:  2963 
  • 4a Fürstner A. Langemann K. Synthesis  1997,  792 
  • 4b Maier ME. Angew. Chem. Int. Ed.  2000,  39:  2073 
  • 4c Prunet J. Angew. Chem. Int. Ed.  2003,  42:  2826 
  • 4d Yet L. Chem. Rev.  2003,  103:  4283 
  • 4e Samojowicz C. Bieniek M. Grela K. Chem. Rev.  2009,  109:  3708 
  • 4f Monfette S. Fogg DE. Chem. Rev.  2009,  109:  3783 
  • 4g Alcaide B. Almendros P. Luna A. Chem. Rev.  2009,  109:  3817 
  • 5a Tsubusaki T. Nishino H. Tetrahedron  2009,  65:  9448 
  • 5b Asahi K. Nishino H. Synthesis  2009,  409 
  • 5c Cong Z.-Q. Miki T. Urakawa O. Nishino H. J. Org. Chem.  2009,  74:  3978 
  • 5d Cong Z.-Q. Nishino H. Synthesis  2008,  2686 
  • 5e Asahi K. Nishino H. Tetrahedron  2008,  64:  1620 
  • 5f Asahi K. Nishino H. Tetrahedron Lett.  2006,  47:  7259 
  • 5g Chowdhury FA. Nishino H. J. Heterocycl. Chem.  2005,  42:  1337 
  • 5h Fujino R. Nishino H. Synthesis  2005,  731 
  • 5i Nguyen V.-H. Nishino H. Tetrahedron Lett.  2004,  45:  3373 
  • 5j Kumabe R. Nishino H. Heterocycl. Commun.  2004,  10:  135 
  • 5k Kajikawa S. Nishino H. Kurosawa K. Heterocycles  2001,  54:  171 
  • 5l Nguyen V.-H. Nishino H. Kajikawa S. Kurosawa K. Tetrahedron  1998,  54:  11445 
  • 5m Ouyang J. Nishino H. Kurosawa K. J. Heterocycl. Chem.  1997,  34:  81 
  • 5n Nishino H. Nguyen V.-H. Yoshinaga S. Kurosawa K. J. Org. Chem.  1996,  61:  8264 
  • 5o Nishino H. Ishida K. Hashimoto H. Kurosawa K. Synthesis  1996,  888 
  • 5p Nishino H. Hashimoto H. Korp JD. Kurosawa K. Bull. Chem. Soc. Jpn.  1995,  68:  1999 
  • 6a Ito Y. Yoshinaga T. Nishino H. Tetrahedron  2010,  66:  2683 
  • 6b Yoshinaga T. Nishino H. Kurosawa K. Tetrahedron Lett.  1998,  39:  9197 
  • 6c Ouyang J. Nishino H. Kurosawa K. J. Heterocycl. Chem.  1995,  32:  1783 
  • 7a Melikyan GG. Org. React.  1997,  49:  427 ; and references cited therein
  • 7b More recent review: Demir AS. Emrullahoglu M. Curr. Org. Synth.  2007,  4:  321 ; and references cited therein
  • 8 Chowdhury FA. Nishino H. Kurosawa K. Heterocycl. Commun.  1999,  5:  111 
  • 9a Jogo S. Nishino H. Yasutake M. Shinmyozu T. Tetrahedron Lett.  2002,  43:  9031 
  • 9b Ito Y. Nishino H. Heterocycl. Commun.  2009,  15:  467 
  • 10a Oumar-Mahamat H. Moustrou C. Surzur JM. Bertrand MP. Tetrahedron Lett.  1989,  30:  331 
  • 10b Oumar-Mahamat H. Moustrou C. Surzur JM. Bertrand MP. J. Org. Chem.  1989,  54:  5684 
  • 10c Swain NA. Brown RCD. Bruton G. Chem. Commun.  2002,  2042 
  • 10d Skerry PS. Swain NA. Harrowven DC. Smyth D. Bruton G. Brown RCD. Chem. Commun.  2004,  1772 
  • 10e Swain NA. Brown RCD. Bruton G. J. Org. Chem.  2004,  69:  122 
  • 11a Smith AB. Wood JL. Wong W. Gould AE. Rizzo CJ. Barbosa J. Komiyama K. Omura S. J. Am. Chem. Soc.  1996,  118:  8308 
  • 11b Xu Z. Johannes CW. Houri AF. La DS. Cogan DA. Hofilena GE. Hoveyda AH. J. Am. Chem. Soc.  1997,  119:  10302 
  • 11c Creighton CJ. Reitz AB. Org. Lett.  2001,  3:  893 
  • 11d Chow CP. Shea KJ. Sparks SM. Org. Lett.  2002,  4:  2637 
  • 11e Liu L. Chen Q. Wu Y.-D. Li C. J. Org. Chem.  2005,  70:  1539 
  • 11f Llàcer E. Urpí F. Vilarrasa J. Org. Lett.  2009,  11:  3198 
  • 12 Clive DLJ. Huang X. Chem. Commun.  2003,  2062 
  • 13a Pederson CJ. J. Am. Chem. Soc.  1967,  89:  7017 
  • 13b Frensdorff HK. J. Am. Chem. Soc.  1971,  93:  600 
  • 13c Poonia NS. J. Am. Chem. Soc.  1974,  96:  1012 
  • 13d Lehn JM. Sauvage J.-P. J. Am. Chem. Soc.  1975,  97:  6700 
  • 13e Sung NK. Cho DW. Choi JH. Choi KW. Yoon UC. J. Org. Chem.  2007,  72:  8831 
14

When the reaction of 1 4 (0.2 mmol) with Mn(OAc)3 (1.0 mmol) was carried out for 10 min under concentrated conditions using AcOH (25 mL), the macrolide 2 4 was isolated in 85% yield (cf. Table  [¹] , entry 6). While the reaction of 1 7 (0.2 mmol) with Mn(OAc)3 (1.2 mmol) was conducted for 15 min under dilute conditions using AcOH (400 mL), the macrolide 2 7 was obtained in 50% yield (cf. Table  [¹] , entry 9).