References and Notes
<A NAME="RB11011ST-1A">1a</A> For
authoritative reviews on N-acyliminium
ion chemistry, see:
Speckamp WN.
Moolenaar MJ.
Tetrahedron
2000,
56:
3817
<A NAME="RB11011ST-1B">1b</A>
Maryanoff BE.
Zhang H.-C.
Cohen JH.
Turchi IJ.
Maryanoff CA.
Chem. Rev.
2004,
104:
1431
For two recent exhaustive reviews
on the intermolecular amidoalkylation of N,O-acetals, see:
<A NAME="RB11011ST-2A">2a</A>
Yazici A.
Pyne SG.
Synthesis
2009,
339
<A NAME="RB11011ST-2B">2b</A>
Yazici A.
Pyne SG.
Synthesis
2009,
513
<A NAME="RB11011ST-3">3</A>
Pin F.
Comesse S.
Garrigues B.
Marchalin Š.
Daich A.
J.
Org. Chem.
2007,
72:
1181
<A NAME="RB11011ST-4A">4a</A>
Ben Othman R.
Bousquet T.
Othman M.
Dalla V.
Org.
Lett.
2005,
7:
5335
<A NAME="RB11011ST-4B">4b</A>
Tranchant MJ.
Moine C.
Ben Othman R.
Bousquet T.
Othman M.
Dalla V.
Tetrahedron
Lett.
2006,
47:
4477
<A NAME="RB11011ST-5">5</A>
Ben Othman R.
Affani R.
Tranchant MJ.
Antoniotti S.
Duñach E.
Dalla V.
Angew. Chem. Int. Ed.
2010,
49:
776
For some other recent reports on
catalytic amidoalkylation of N,O-acetals:
<A NAME="RB11011ST-6A">6a</A>
Okitsu O.
Suzuki R.
Kobayashi S.
J.
Org. Chem.
2001,
66:
809
<A NAME="RB11011ST-6B">6b</A>
Camilo NS.
Pilli RA.
Tetrahedron
Lett.
2004,
45:
2821
<A NAME="RB11011ST-6C">6c</A>
de Godoy LAF.
Camilo NS.
Pilli RA.
Tetrahedron Lett.
2006,
47:
7853
<A NAME="RB11011ST-6D">6d</A>
Ben Othman R.
Bousquet T.
Fousse A.
Othman M.
Dalla V.
Org.
Lett.
2005,
7:
2825 ;
and references therein
<A NAME="RB11011ST-6E">6e</A>
Kinderman SS.
Wekking MMT.
van Maarseveen JH.
Schoemaker HE.
Hiemstra H.
Rutjes FPJT.
J.
Org. Chem.
2005,
70:
5519
For impressive catalytic enantioselective
approaches, see:
<A NAME="RB11011ST-7A">7a</A>
Raheem IT.
Thiara PS.
Peterson EA.
Jacobsen EN.
J.
Am. Chem. Soc.
2007,
129:
13404
<A NAME="RB11011ST-7B">7b</A>
Raheem IT.
Thiara PS.
Jacobsen EN.
Org. Lett.
2008,
10:
1577
<A NAME="RB11011ST-7C">7c</A>
Peterson EA.
Jacobsen EN.
Angew.
Chem. Int. Ed.
2009,
48:
6328
<A NAME="RB11011ST-7D">7d</A>
Muratore MC.
Holloway CA.
Pilling AW.
Storer RI.
Trevitt G.
Dixon DJ.
J.
Am. Chem. Soc.
2009,
131:
10796
<A NAME="RB11011ST-8">8</A>
Moussa S.
Comesse S.
Dalla V.
Daïch A.
Sanselme M.
Netchitaïlo P.
Synlett
2010,
2197
<A NAME="RB11011ST-9A">9a</A>
Grau F.
Heumann A.
Duñach E.
Angew. Chem. Int. Ed.
2006,
45:
7285
<A NAME="RB11011ST-9B">9b</A>
Paz Muñoz M.
Lloyd-Jones GC.
Eur.
J. Org. Chem.
2009,
516
For a recent series of papers reporting
diastereoselective alkylation of chiral alcohol derivatives bearing
an adjacent ester group, see:
<A NAME="RB11011ST-10A">10a</A>
Rubenbauer P.
Bach T.
Adv. Synth. Catal.
2008,
350:
1125
<A NAME="RB11011ST-10B">10b</A>
Stadler D.
Bach T.
J. Org. Chem.
2009,
74:
4747
<A NAME="RB11011ST-10C">10c</A>
Rubenbauer P.
Bach T.
Chem. Commun.
2009,
2130
<A NAME="RB11011ST-10D">10d</A>
Cozzi PG.
Benfatti F.
Angew. Chem.
Int. Ed.
2010,
49:
256
<A NAME="RB11011ST-11">11</A> For related studies in our group,
see:
Comesse S.
Sanselme M.
Daïch A.
J. Org. Chem.
2008,
73:
5566
<A NAME="RB11011ST-12">12</A>
Typical Procedure
for the Preparation of 4a-d
To a solution
of an N,O-acetal 3a-d (0.4
mmol) in a freshly distilled solvent as indicated in Table
[¹]
(1.5 mL) was added dropwise
a 0.5 M CH2Cl2 solution of HNTf2 (40 µL,
0.02 mmol, 0.05 equiv). The reaction was stirred at the temper-ature
indicated in Table
[¹]
and
followed by TLC. At the end of the reaction, the solution was quenched
at r.t. by a 5% aq solution of NaHCO3, and the
aqueous phase was extracted two times with EtOAc (3 mL). The combined
organic layers were dried over MgSO4, the solvent was
removed under vacuum, and the residue was then purified by silica
gel chromatography to provide the desired tricycles 4a-d.
Physical
Data for 4b
Isolated as white solid (recrystallized
from Et2O); mp 157-159 ˚C;
yield 95% (EtOAc-cyclohexane, 40:60). IR (KBr): 1728,
1691 cm-¹. ¹H NMR
(300 MHz, CDCl3): δ = 0.84 (t, J = 7.0 Hz,
3 H), 1.36 (t, J = 7.0
Hz, 3 H), 2.60 (d, J = 16.4 Hz,
1 H), 2.79-3.03 (m, 3 H), 3.05 (d, J = 16.4
Hz, 1 H), 3.62-3.84 (m, 2 H), 3.84 (s, 6 H), 4.29-4.50
(m, 3 H), 5.54 (s, 1 H), 6.57 (s, 1 H), 7.30 (s, 1 H). ¹³C
NMR (75 MHz, CDCl3): δ = 13.7, 14.3,
28.6, 37.8, 40.1, 60.9, 62.0, 26.6, 110.8, 110.5, 123.6, 127.9,
147.7, 148.4, 168.9, 169.8, 170.7.
<A NAME="RB11011ST-13">13</A>
A simple steric bias (ester > cyano)
could also be considered as an alternative or competitive mechanism,
in line with ref. 10.
<A NAME="RB11011ST-14">14</A>
Analytical data and copy of the ¹H
NMR spectrum for compound 4d are provided
in the Supporting Information.
<A NAME="RB11011ST-15">15</A>
Full crystallographic data have been
deposited at the Cambridge Crystallographic Data Centre; CCDC reference number
833548 for the major diastereoisomer of product 4d. Copies
of the data can be obtained free of charge at the following address:
http://www.ccdc.cam.ac.uk.
<A NAME="RB11011ST-16">16</A>
For typical procedure for the preparation
of 6-10,
see the Supporting Information.
<A NAME="RB11011ST-17">17</A>
When these allylations were performed
at 60 ˚C overnight, around 25% conversion
into the desired product was observed, thus confirming the importance
of the two ester functions for an efficient process under mild conditions
in the intermolecular reactions too.
<A NAME="RB11011ST-18">18</A>
For typical procedure for the preparation
of 12-15,
see the Supporting Information.
<A NAME="RB11011ST-19">19</A> For a representative paper, see:
Louwrier S.
Ostendorf M.
Boom A.
Hiemstra H.
Speckamp WN.
Tetrahedron
1996,
52:
2603