Planta Med 2011; 77(10): 1005-1012
DOI: 10.1055/s-0030-1270732
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Involvement of Mitochondrial Permeability Transition Pore Opening in 7-Xylosyl-10-Deacetylpaclitaxel-Induced Apoptosis

Shougang Jiang1 , 2 , Yuangang Zu1 , 2 , Zhuo Wang1 , 2 , Yu Zhang1 , 2 , Yuejie Fu1 , 2
  • 1Key Laboratory of Foresty Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
  • 2Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
Further Information

Publication History

received Sep. 30, 2010 revised January 3, 2011

accepted January 12, 2011

Publication Date:
03 February 2011 (online)

Abstract

7-Xylosyl-10-deacetylpaclitaxel is a natural hydrophilic paclitaxel derivative. It has long been used in Chinese clinics to treat cancer. In order to further explore the underlying intracellular target of 7-xylosyl-10-deacetylpaclitaxel towards the PC-3 cell line, the ultra-structural morphology of mitochondria, the intracellular Ca2+, the intracellular ATP, the intracellular hydrogen peroxide and pro-apoptotic Bax and Bcl-2 protein expression were measured. Additionally, the changes of mitochondrial morphology and membrane potential (ΔΨm) were analyzed by atomic force microscopy (AFM) and flow cytometry, respectively. Our results suggest that the intracellular target of 7-xylosyl-10-deacetylpaclitaxel may be the mitochondrial permeability transition pore (mPTP). To further evaluate this hypothesis, we assessed the effect of a specific mPTP inhibitor (cyclosporine A) on the toxic action of 7-xylosyl-10-deacetylpaclitaxel. The 7-xylosyl-10-deacetylpaclitaxel-induced decrease in mitochondrial inner transmembrane potential (ΔΨm) was abolished by the addition of cyclosporine A (CsA) in PC-3 cells, indicating that 7-xylosyl-10-deacetylpaclitaxel may target mPTP. Furthermore, treatment with 7-xylosyl-10-deacetylpaclitaxel increased ROS levels in PC-3 cells. This effect was counteracted by 10 µM cyclosporine A. These data indicate that oxidative damage is involved in mPTP.

References

  • 1 Fu Y, Li S, Zu Y, Yang G, Yang Z, Luo M, Jiang S, Wink M, Efferth T. Medicinal chemistry of paclitaxel and its analogues.  Curr Med Chem. 2009;  16 3966-3985
  • 2 Nilsson U, Johnsson R, Fransson L A, Ellervik U, Mani K. Attenuation of tumor growth by formation of antiproliferative glycosaminoglycans correlates with low acetylation of histone H3.  Cancer Res. 2010;  70 3771-3779
  • 3 Fu Y, Zu Y, Li S, Sun R, Efferth T, Liu W, Jiang S, Luo H, Wang Y. Separation of 7-xylosyl-10-deacetyl-paclitaxel and 10-deacetylbaccatin III from the remainder extracts free of paclitaxel using macroporous resins.  J Chromatogr A. 2008;  1177 77-86
  • 4 Parmar V S, Jha A, Bisht K S, Taneja P, Singh S K, Kumar A, Poonam J R, Olsen C E. Constituents of the yew trees.  Phytochemistry. 1999;  50 1267-1304
  • 5 Senilh V, Blechert S, Colin M, Guenard D, Picot F, Potier P, Varenne P. Mise en evidence de nouveaux analogues du taxol extraits de Taxus baccata.  J Nat Prod. 1984;  47 131-137
  • 6 Hao D C, Ge G B, Yang L. Bacterial diversity of Taxus rhizosphere: culture-independent and culture-dependent approaches.  FEMS Microbiol Lett. 2008;  284 204-212
  • 7 Jiang S G, Zhang Y, Zu Y G, Wang Z, Fu Y. Antitumor activities of extracts and compounds from water decoctions of Taxus cuspidate.  Am J Chin Med. 2010;  38 1107-1114
  • 8 Jiang S G, Zu Y G, Zhang L, Fu Y, Zhang Y, Wang Z, Hua X, Wang J T. Determination of a hydrophilic paclitaxel derivative, 7-xylosyl-10-deacetylpaclitaxel in rat plasma by LC-MS/MS.  Biomed Chromatogr. 2009;  23 472-479
  • 9 Tanino T, Nawa A, Kondo E, Kikkawa F, Daikoku T, Tsurumi T, Luo C, Nishiyama Y, Takayanagi Y, Nishimori K, Ichida S, Wada T, Miki Y, Iwaki M. Paclitaxel-2′-ethylcarbonate prodrug can circumvent P-glycoprotein-mediated cellular efflux to increase drug cytotoxicity.  Pharm Res. 2007;  24 555-565
  • 10 Jiang S G, Zu Y G, Zhang Y, Fu Y, Wang Z, Wang J T. Transport of a hydrophilic paclitaxel derivative, 7-xylosyl-10-deacetylpaclitaxel by human intestinal epithelial Caco-2 cells.  Planta Med. 2010;  76 1592-1595
  • 11 Jiang S G, Zu Y G, Fu Y J, Zhang Y, Efferth T. Activation of the mitochondria-driven pathway of apoptosis in human PC-3 prostate cancer cells by a novel hydrophilic paclitaxel derivative, 7-xylosyl-10-deacetylpaclitaxel.  Int J Oncol. 2008;  33 103-111
  • 12 Lataste H, Senith V, Wright M, Guénard D, Potier P. Relationships between the structures of taxol and baccatine III derivatives and their in vitro action on the disassembly of mammalian brain and physarum amoebal microtubules.  Proc Natl Acad Sci USA. 1984;  81 4090-4094
  • 13 Estève M A, Carré M, Braguer D. Microtubules in apoptosis induction: are they necessary?.  Curr Cancer Drug Targets. 2007;  7 713-729
  • 14 Carré M, Carles G, André N, Douillard S, Ciccolini J, Briand C, Braguer D. Involvement of microtubules and mitochondria in the antagonism of arsenic trioxide on paclitaxel-induced apoptosis.  Biochem Pharmacol. 2002;  63 1831-1842
  • 15 André N, Braguer D, Brasseur G, Gonçalves A, Lemesle-Meunier D, Guise S, Jordan M A, Briand C. Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells.  Cancer Res. 2000;  60 5349-5353
  • 16 Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis.  Apoptosis. 2007;  12 815-833
  • 17 Kinnally K W, Antonsson B. A tale of two mitochondrial channels, MAC and PTP, in apoptosis.  Apoptosis. 2007;  12 857-868
  • 18 André N, Carré M, Brasseur G, Pourroy B, Kovacic H, Briand C, Braguer D. Paclitaxel targets mitochondria upstream of caspase activation in intact human neuroblastoma cells.  FEBS Lett. 2002;  532 256-260
  • 19 Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death.  Apoptosis. 2007;  12 913-922
  • 20 Sherbakova E A, Stromskaia T P, Rybalkina E, Kalita O V, Stavrovskaia A A. Role of PTEN protein in multidrug resistance of prostate cancer cells.  Mol Biol (Mosk). 2008;  42 487-493
  • 21 Pani G, Koch O R, Galeotti T. The p 53-p 66shc-manganese superoxide dismutase (MnSOD) network: a mitochondrial intrigue to generate reactive oxygen species.  Int J Biochem Cell Biol. 2009;  41 1002-1005
  • 22 Alexandre F, Batteux J, Nicco C, Chéreau C, Laurent A, Guillevin L, Weill B, Goldwasser F. Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo.  Int J Cancer. 2006;  119 41-48
  • 23 Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transition in cell death.  Apoptosis. 2007;  12 835-840
  • 24 Gonzalvez F, Gottlieb E. Cardiolipin: setting the beat of apoptosis.  Apoptosis. 2007;  12 877-885
  • 25 Rostovtseva T K, Bezrukov S M. VDAC regulation: role of cytosolic proteins and mitochondrial lipids.  J Bioenerg Biomembr. 2008;  40 163-170
  • 26 Joseph S K, Hajnóczky G. IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond.  Apoptosis. 2007;  12 951-968
  • 27 Galluzzi L, Zamzami N, de La Motte Rouge T, Lemaire C, Brenner C, Kroemer G. Methods for the assessment of mitochondrial membrane permeabilization in apoptosis.  Apoptosis. 2007;  12 803-813
  • 28 Cavalieri E, Bergamini C, Mariotto S, Leoni S, Perbellini L, Darra E, Suzuki H, Fato R, Lenaz G. Involvement of mitochondrial permeability transition pore opening in alpha-bisabolol induced apoptosis.  FEBS J. 2009;  276 3990-4000
  • 29 Rodríguez-Enríquez S, Marín-Hernández A, Gallardo-Pérez J C, Carreño-Fuentes L, Moreno-Sánchez R. Targeting of cancer energy metabolism.  Mol Nutr Food Res. 2009;  53 29-48
  • 30 Schwarz M, Andrade-Navarro M A, Gross A. Mitochondrial carriers and pores: key regulators of the mitochondrial apoptotic program?.  Apoptosis. 2007;  12 869-876
  • 31 Pastorino J G, Hoek J B. Regulation of hexokinase binding to VDAC.  J Bioenerg Biomembr. 2008;  40 171-182
  • 32 Pastorino J G, Hoek J B, Shulga N. Activation of glycogen synthase kinase 3β disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity.  Cancer Res. 2005;  65 10545-10554
  • 33 Pedersen P L. Voltage dependent anion channels (VDACs): a brief introduction with a focus on the outer mitochondrial compartment's roles together with hexokinase-2 in the “Warburg effect” in cancer.  J Bioenerg Biomembr. 2008;  40 123-126

Yuangang Zu

Key Laboratory of Foresty Plant Ecology
Ministry of Education
Northeast Forestry University

No. 26, Hexing Street

Harbin 150040

People's Republic of China

Phone: +86 4 51 82 19 15 17

Fax: +86 4 51 82 10 20 82

Email: cpu127@126.com

    >