Synthesis 2012(9): 1304-1307  
DOI: 10.1055/s-0031-1289712
PSP
© Georg Thieme Verlag Stuttgart ˙ New York

Efficient Preparation of β-Branched γ,δ-Unsaturated Esters through Copper-Catalyzed Allylic Alkylation of Ketene Silyl Acetal

Dong Li, Hirohisa Ohmiya*, Masaya Sawamura*
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
Fax: +81(11)7063749; e-Mail: ohmiya@sci.hokudai.ac.jp; e-Mail: sawamura@sci.hokudai.ac.jp;
Further Information

Publication History

Received 17 December 2011
Publication Date:
15 February 2012 (online)

Abstract

Copper-catalyzed allylic alkylation of ketene silyl acetals proceeded with excellent γ-E-selectivity. Efficient α-to-γ chirality transfer with anti-selectivity occurred in the reaction of enantioenriched secondary allylic phosphates, affording enantioenriched β-branched γ,δ-unsaturated esters. The reaction was readily scalable and highly reliable in terms of product yield and stereoselectivities.

    References

  • For reviews on transition-metal-catalyzed allylic substitutions, see:
  • 1a Tsuji J. Acc. Chem. Res.  1969,  2:  144 
  • 1b Trost BM. Tetrahedron  1977,  33:  2615 
  • 1c Trost BM. Van Vranken DL. Chem. Rev.  1996,  96:  395 
  • 1d Trost BM. Crawley ML. Chem. Rev.  2003,  103:  2921 
  • 1e Lu Z. Ma S. Angew. Chem. Int. Ed.  2008,  47:  258 
  • For selected examples on transition-metal-catalyzed enantioselective allylic alkylations with ketone enolates, see:
  • 2a Trost BM. Shroeder GM. J. Am. Chem. Soc.  1999,  121:  6759 
  • 2b Braun M. Laicher F. Meier T. Angew. Chem. Int. Ed.  2000,  39:  3494 
  • 2c Burger EC. Tunge JA. Org. Lett.  2004,  6:  4113 
  • 2d Behenna DC. Stoltz BM. J. Am. Chem. Soc.  2005,  126:  15044 
  • 2e Yan X.-X. Liang C.-G. Zhang Y. Hong W. Cao B.-X. Dai L.-X. Hou X.-L. Angew. Chem. Int. Ed.  2005,  44:  6544 
  • 2f Trost BM. Xu J. J. Am. Chem. Soc.  2005,  127:  17180 
  • 2g Zheng W.-H. Zheng B.-H. Zhang Y. Hou X.-L.
    J. Am. Chem. Soc.  2007,  129:  7718 
  • 2h Chen J.-P. Ding C.-H. Liu W. Hou X.-L. Dai L.-X. J. Am. Chem. Soc.  2010,  132:  15493 
  • 2i Braun M. Meier T. Angew. Chem. Int. Ed.  2006,  45:  6952 ; and references therein
  • 2j Graening T. Hartwig JF. J. Am. Chem. Soc.  2004,  127:  17192 
  • For rhodium-catalyzed α-selective allylic alkylations of copper enolates derived from aryl ketones with chiral secondary allylic alcohol derivatives bearing a terminal alkene moiety, see:
  • 4a Evans PA. Leahy DK. J. Am. Chem. Soc.  2003,  125:  8974 
  • 4b Evans PA. Lawler MJ. J. Am. Chem. Soc.  2004,  126:  8642 
  • 5 Rhodium-catalyzed allylic substitution of allylic carbonates having an allylic system in the internal position with enoxysilanes occurred competitively at the α- and γ-posi­-tions, see: Muraoka T. Matsuda I. Itoh K. Tetrahedron Lett.  2000,  41:  8807 
  • For Rh-catalyzed α-selective allylic alkylations of malonates with secondary allylic substrates, see:
  • 6a Evans PA. Nelson JD. Tetrahedron Lett.  1998,  39:  1725 
  • 6b Evans PA. Nelson JD. J. Am. Chem. Soc.  1998,  120:  5581 
  • 6c Ashfeld BL. Miller KA. Martin SF. Org. Lett.  2004,  6:  1321 
  • For iridium-catalyzed α-selective allylic alkylations of malonates with secondary allylic substrates, see:
  • 7a Takeuchi R. Kashio M. J. Am. Chem. Soc.  1998,  120:  8647 
  • 7b Bartels B. Helmchen G. Chem. Commun.  1999,  741 
  • For iron-catalyzed α-selective allylic alkylations of soft carbon nucleophiles with secondary allylic substrates, see:
  • 8a Yanagisawa A. Nomura N. Yamamoto H. Synlett  1991,  513 
  • 8b Plietker B. Angew. Chem. Int. Ed.  2006,  45:  1469 
  • 8c Holzwarth M. Dieskau A. Tabassam M. Plietker B. Angew. Chem. Int. Ed.  2009,  48:  7251 
  • For ruthenium-catalyzed α-selective allylic alkylations of malonates with secondary allylic substrates, see:
  • 9a Trost BM. Fraisse PL. Ball ZT. Angew. Chem. Int. Ed.  2002,  41:  1059 
  • 9b Kawatsura M. Ata F. Hayase S. Itoh T. Chem. Commun.  2007,  4283 
  • 10 Li D. Ohmiya H. Sawamura M. J. Am. Chem. Soc.  2011,  133:  5672 
  • For copper-catalyzed γ-selective and stereospecific allyl-alkyl and allyl-aryl couplings with organoboron compounds, see:
  • 11a Ohmiya H. Yokobori U. Makida Y. Sawamura M. J. Am. Chem. Soc.  2010,  132:  2895 
  • 11b Ohmiya H. Yokokawa N. Sawamura M. Org. Lett.  2010,  12:  2438 
  • 11c Whittaker AM. Rucker RP. Lalic G. Org. Lett.  2010,  12:  3216 
  • 11d Shintani R. Takatsu K. Takeda M. Hayashi T. Angew. Chem. Int. Ed.  2011,  50:  8656 
  • For palladium-catalyzed γ-selective and stereospecific allyl-aryl coupling between allylic esters and arylboronic acids, see:
  • 12a Ohmiya H. Makida Y. Tanaka T. Sawamura M. J. Am. Chem. Soc.  2008,  130:  17276 
  • 12b Ohmiya H. Makida Y. Li D. Tanabe M. Sawamura M. J. Am. Chem. Soc.  2010,  132:  879 
  • 12c Li D. Tanaka T. Ohmiya H. Sawamura M. Org. Lett.  2010,  12:  3344 
  • 12d Makida Y. Ohmiya H. Sawamura M. Chem. Asian J.  2011,  6:  410 
  • For reviews on the Claisen rearrangement, see:
  • 13a Ziegler FE. Chem. Rev.  1988,  88:  1423 
  • 13b Castro AMM. Chem. Rev.  2004,  104:  2939 
  • 14 For the rhodium-catalyzed reductive Claisen rearrangement and discussions on the functional group compatibility of the Ireland-Claisen rearrangement, see: Miller SP. Morken JP. Org. Lett.  2002,  4:  2743 
  • For discussions on the functional group compatibility of the Johnson-Claisen rearrangement, see:
  • 15a Cosgrove KL. McGeary RP. Synlett  2009,  1749 
  • 15b Cosgrove KL. McGeary RP. Tetrahedron  2010,  66:  3050 
  • 17 Menéndez Pérez B. Hartung J. Tetrahedron Lett.  2009,  50:  960 
3

The regioselectivity in palladium-catalyzed allylic substitutions that involve a (π-allyl)palladium intermediates is highly dependent on the substitution pattern of allylic substrates. See refs 1 and 2a-i.

16

See the Supporting Information of ref. 6 for procedures