Abstract
Inositol phosphate derivatives are usually synthesized by repeated
protection-deprotection procedures, necessitating development of
an independent synthetic route for each inositol derivative. Herein,
a synthetic precursor for all regioisomers of inositol phosphate
is reported. A cycloadduct obtained by the Diels-Alder reaction
of trans -1-methoxy-3-trimethylsilyloxybuta-1,3-diene
and methyl vinyl ketone was converted into an inositol derivative
by sequential introduction and immediate protection of hydroxy groups. Thus,
the six hydroxy groups of the obtained inositol derivative are differentiated
by different protective groups that are cleavable under independent
conditions. This would enable us to prepare all regioisomers of
inositol phosphate derivative.
Key words
inositol phosphate - Diels-Alder reaction - oxidative rearrangement - asymmetric dihydroxylation
- monoacylation
References
<A NAME="RF001312SS-1">1 </A>
Prestwich GD.
Acc.
Chem. Res.
1996,
29:
503
<A NAME="RF001312SS-2">2 </A>
Potter BVL.
Lampe D.
Angew. Chem.,
Int. Ed. Engl.
1995,
34:
1933
<A NAME="RF001312SS-3">3 </A>
Mikoshiba K.
Trends
Pharmacol. Sci.
1993,
14:
1986
<A NAME="RF001312SS-4">4 </A>
Anraku K.
Inoue T.
Sugimoto K.
Morii T.
Mori Y.
Okamoto Y.
Otsuka M.
Org. Biomol.
Chem.
2008,
6:
1822
<A NAME="RF001312SS-5">5 </A>
Anraku K.
Inoue T.
Sugimoto K.
Kudo K.
Okamoto Y.
Morii T.
Mori Y.
Otsuka M.
Bioorg.
Med. Chem.
2011,
19:
6833
<A NAME="RF001312SS-6">6 </A>
Anraku K.
Fukuda R.
Takamune N.
Misumi S.
Okamoto Y.
Otsuka M.
Fujita M.
Biochemistry
2010,
49:
5109
<A NAME="RF001312SS-7A">7a </A>
Inoue T.
Kikuchi K.
Hirose K.
Iino M.
Nagano T.
Bioorg. Med. Chem. Lett.
1999,
9:
1697
<A NAME="RF001312SS-7B">7b </A>
Han F.
Hayashi M.
Watanabe Y.
Tetrahedron
2003,
59:
7703
<A NAME="RF001312SS-7C">7c </A>
Dorman G.
Chen J.
Prestwich GD.
Tetrahedron
Lett.
1995,
36:
8719
<A NAME="RF001312SS-7D">7d </A>
Thum O.
Chen J.
Prestwich GD.
Tetrahedron
Lett.
1996,
37:
9017
<A NAME="RF001312SS-7E">7e </A>
Ley SV.
Sternfeld L.
Tetrahedron
Lett.
1988,
29:
5305
<A NAME="RF001312SS-7F">7f </A>
Carless HAJ.
Busia K.
Tetrahedron
Lett.
1990,
31:
3449
<A NAME="RF001312SS-8">8 </A>
Danishefsky S.
Kitahara T.
Yan CF.
Morris J.
J. Am. Chem. Soc.
1979,
101:
6996
<A NAME="RF001312SS-9">9 </A>
The stereochemistry of 3a and 3b was assigned by comparing with the closely
related known compound whose stereochemistry has already been established
by Danishefsky.8
<A NAME="RF001312SS-10A">10a </A>
Paquette LA.
Lin H.-S.
Gunn BP.
Coghlan M.
J.
Am. Chem. Soc.
1988,
110:
5818
<A NAME="RF001312SS-10B">10b </A>
Pennanen SI.
Tetrahedron Lett.
1980,
21:
657
<A NAME="RF001312SS-10C">10c </A>
Rubuttom GM.
Gruber JM.
Tetrahedron
Lett.
1978,
4603
<A NAME="RF001312SS-10D">10d </A>
Rubuttom GM.
Vazquez MA.
Pelegria DR.
Tetrahedron Lett.
1974,
4319
<A NAME="RF001312SS-11">11 </A>
The relative stereochemistry of 4a and 4b was
assigned based on the NMR coupling constants.
<A NAME="RF001312SS-12">12 </A>
Acena JA.
Arjona O.
Manas R.
Plumet J.
J. Org. Chem.
2000,
65:
2580
<A NAME="RF001312SS-13">13 </A>
The relative stereochemistry of 5a and 5b was
assigned based on the NMR coupling constants.
<A NAME="RF001312SS-14">14 </A>
Giner JL.
J.
Org. Chem.
2005,
70:
721
<A NAME="RF001312SS-15">15 </A>
Miyata O.
Nishiguchi A.
Ninomiya I.
Aoe K.
Okamura K.
Naito T.
J. Org. Chem.
2000,
65:
6922
<A NAME="RF001312SS-16">16 </A>
Corey EJ.
Niimura K.
Konishi Y.
Hashimoto S.
Hamada Y.
Tetrahedron
Lett.
1986,
27:
2199
<A NAME="RF001312SS-17">17 </A>
Armstrong A.
Barsanti PA.
Jones LH.
Ahmed G.
J.
Org. Chem.
2000,
65:
7020
<A NAME="RF001312SS-18">18 </A>
The stereochemical assignment of 15a and 15b was
based on the NMR coupling constants.
<A NAME="RF001312SS-19">19 </A>
Nagashima N.
Ohno M.
Chem. Lett.
1987,
141
<A NAME="RF001312SS-20">20 </A>
Stereochemical assignment of 17a was tentative at this stage. The stereochemistry
of compound 19 was established at a later
step.