Synlett 2012(5): 778-782  
DOI: 10.1055/s-0031-1290364
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis and Characterization of Near-Infrared Emissive BODIPY-Based Conjugated Polymers

Yuanzhao Wu, Xiao Ma, Jiemin Jiao, Yixiang Cheng*, Chengjian Zhu*
Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
Fax: +86(25)83317761; e-Mail: yxcheng@nju.edu.cn; e-Mail: cjzhu@nju.edu.cn;
Further Information

Publication History

Received 29 November 2011
Publication Date:
24 February 2012 (online)

Abstract

Three novel BODIPY-based conjugated polymers could be synthesized via palladium-catalyzed Sonogashira coupling reaction. Compared with BODIPY model derivatives, the polymers can emit in the range from deep-red to near-infrared region with emission spectral maxima at λ = 640-660 nm and exhibit moderate fluorescent quantum yield from 0.23 to 0.26. Density functional theory (DFT) calculations are performed on three polymers repeat units, and HOMO and LUMO energy levels of the conjugated polymers are estimated.

    References and Notes

  • 1a Karolin J. Johansson LBA. Strandberg L. Ny T.
    J. Am. Chem. Soc.  1994,  116:  7801 
  • 1b Chow YL. Johansson CI. Zhang YH. Gautron R. Yang L. Rassat A. Yang SZ. J. Phys. Org. Chem.  1996,  9:  7 
  • 1c Wu Q. Esteghamatian M. Hu NX. Popovic Z. Enright G. Tao Y. D’Iorio M. Wang S. Chem. Mater.  2000,  12:  79 
  • 1d Wan CW. Burghart A. Chen J. Bergstrom F. Johanson LBA. Wolford MF. Kim TG. Topp MR. Hochstrasser RM. Burgess K. Chem. Eur. J.  2003,  9:  4430 
  • 1e Gorman A. Killoran J. O’Shea C. Kenna T. Gallagher WM. O’Sgea DF. J. Am. Chem. Soc.  2004,  126:  10619 
  • 1f Kappaun S. Rentenberger S. Pogantsch A. Zojer E. Mereiter K. Trimmel G. Saf R. Moller KC. Stelzer F. Slugovc C. Chem. Mater.  2006,  18:  3539 
  • 1g Cui Y. Wang S. J. Org. Chem.  2006,  71:  6485 
  • 1h Nagai A. Kokado K. Nagata Y. Chujo Y.
    J. Org. Chem.  2008,  73:  8605 
  • 2a Ulrich G. Ziessel R. Harriman A. Angew. Chem. Int. Ed.  2008,  47:  1184 
  • 2b Loudet A. Burgess K. Chem. Rev.  2007,  107:  4891 
  • 3a Rurack K. Kollmannsberger M. Resch-Genger U. Daub J. J. Am. Chem. Soc.  2000,  122:  968 
  • 3b Chen J. Burghart A. Derecskei-Kovacs A. Burgess K. J. Org. Chem.  2000,  65:  2900 
  • 3c Bricks JL. Kovalchuk A. Trieflinger C. Nofz M. Buschel M. Tolmachev AI. Daub J. Rurack K. J. Am. Chem. Soc.  2005,  127:  13522 
  • 3d Dickinson BC. Chang CJ. J. Am. Chem. Soc.  2008,  130:  9638 
  • 3e Domaille DW. Zeng L. Chang CJ.
    J. Am. Chem. Soc.  2010,  132:  1194 
  • 4a Rurack K. Kollmannsberger M. Daub J. Angew. Chem. Int. Ed.  2001,  40:  385 
  • 4b Baruah M. Qin WW. Basaric N. De Borggraeve WM. Boens N. J. Org. Chem.  2005,  70:  4152 
  • 5a Gabe Y. Urano Y. Kikuchi K. Kojima H. Nagano T. J. Am. Chem. Soc.  2004,  126:  3357 
  • 5b Srikun D. Miller EW. Domaille DW. Chang CJ. J. Am. Chem. Soc.  2008,  130:  4596 
  • 6a Li L. Han J. Nguyen B. Burgess K. J. Org. Chem.  2008,  73:  1963 
  • 6b Zheng Q. Xu G. Prasad PN. Chem. Eur. J.  2008,  14:  5812 
  • 6c Didier P. Ulrich G. Mely Y. Ziessel R. Org. Biomol. Chem.  2009,  7:  3639 
  • 7a Erten-Ela S. Yilmaz MD. Icli B. Dede Y. Icli S. Akkaya EU. Org. Lett.  2008,  10:  3299 
  • 7b Rousseau T. Cravino A. Bura T. Ulrich G. Ziessel R. Roncali J. Chem. Commun.  2009,  1673 
  • 7c Rousseau T. Cravino A. Bura T. Ulrich G. Ziessel R. Roncali J. J. Mater. Chem.  2009,  19:  2298 
  • 7d Rousseau T. Cravino A. Ripaud E. Leriche P. Rihn S. De Nicola A. Ziessel R. Roncali J. Chem. Commun.  2010,  5082 
  • 7e Kolemen S. Cakmak Y. Erten-Ela S. Altay Y. Brendel J. Thelakkat M. Akkaya EU. Org. Lett.  2010,  12:  3812 
  • 8 Ziessel R. Ulrich G. Harriman A. New J. Chem.  2007,  31:  496 
  • 9a Zhu M. Jiang L. Yuan M. Liu X. Ouyang C. Zheng H. Yin X. Zuo Z. Liu H. Li Y. J. Polym. Sci., Part A: Polym. Chem.  2008,  46:  7401 
  • 9b Donuru VR. Vegesna GK. Velayudham S. Meng G. Liu HJ. Polym. Sci., Part A: Polym. Chem.  2009,  47:  5354 
  • 9c Alemdaroglu FE. Alexander SC. Ji DM. Prusty DK. Borsch M. Herrmann A. Macromolecules  2009,  42:  6529 
  • 9d Kim BS. Ma B. Donuru VR. Liu H. Frechet JMJ. Chem. Commun.  2010,  46:  4148 
  • 10a Meng Ge. Velayudham S. Smith A. Luck R. Liu HY. Macromolecules  2009,  42:  1995 
  • 10b Donuru VR. Zhu SL. Green S. Liu HY. Polymer  2010,  51:  5359 
  • 10c Nagai A. Chujo Y. Macromolecules  2010,  43:  193 
  • 10d Thivierge C. Loudet A. Burgess K. Macromolecules  2011,  44:  4012 
  • 10e Popere BC. Pelle AMD. Thayumanavan S. Macromolecules  2011,  44:  4767 
  • 12a Wu YZ. Dong Y. Li JF. Huang XB. Cheng Y. Zhu CJ. Chem. Asian J.  2011,  6:  2725 
  • 12b Li J. Meng J. Huang XB. Cheng YX. Zhu CJ. Polymer  2010,  51:  3425 
  • 13 Yogo T. Urano Y. Ishitsuka Y. Maniwa F. Nagano T. J. Am. Chem. Soc.  2005,  127:  12162 
  • 14 Crosby GE. Demas JN. J. Phys. Chem.  1971,  75:  991 
  • 15 Jiang XJ. Yeung SL. Lo PC. Fong WP. Ng DKP. J. Med. Chem.  2011,  54:  320 
11

General Procedure for Polymerization via Sonogashira Polymerization Reaction
A 20 mL Schlenk flask was charged with monomers, catalyst Pd(PPh3)4, (CuI), and a magnetic stirrer. A 1:1 mixture of degassed anhyd Et3N and anhyd toluene solvent was then added to the monomers, and the reaction temperature was raised to 80 ˚C. The polymerization was continued for 72 h. Then the solvent was evaporated under vacuum. The residue was dissolved in CH2Cl2 (100 mL) and washed with H2O (3×). The organic layer was collected, dried over anhyd Na2SO4, and filtered. The filtrate was concentrated and added to MeOH to precipitate the polymer. A dark powder was obtained by filtration, further purified with MeOH, and then dried under vacuum for 24 h to afford polymers.
P1 BODIPY dye 2 (57 mg, 0.1 mol), monomer 5 (103 mg, 0.1 mmol), Pd(PPh3)4 (12.0 mg, 0.01 mmol), and CuI (1.9 mg, 0.01mmol) were added to a mixture of toluene (3 mL) and Et3N (3 mL). The mixture was stirred under N2 atmosphere at 80 ˚C for 72 h, and then the solvent was evaporated under vacuum. The residue was dissolved in CH2Cl2 (100 mL) and washed with H2O (3×). The organic layer was collected, dried over anhyd Na2SO4, and filtered. The filtrate was concentrated and added to MeOH to precipitate the polymer. A dark powder was obtained by filtration, further washed with MeOH, and then dried under vacuum for 24 h to afford a yield of 59%. ¹H NMR (300 MHz, CDCl3): δ = 7.71-7.65 (br, 5 H), 7.57-7.42 (br, 6 H), 4.24-4.15 (br 12 H), 3.92-3.84 (br, 12 H), 3.76-3.68 (br, 12 H), 3.52 (br, 6 H), 3.68-3.65 (br, 12 H), 3.52 (br, 6 H), 3.37 (br, 6 H), 3.20 (br, 6 H), 2.70 (br, 6 H), 1.42 (br, 6 H). FT-IR (KBr): 3441, 2923, 2823, 1630, 1529, 1384, 1317, 1261, 1095, 1014, 862, 724, 535 cm. P2 BODIPY dye 2 (57 mg, 0.1 mol) and monomer 6 (36 mg, 0.1 mmol) were added to a 5 mL Schlenk flask. Pd(PPh3)4 (12.0 mg, 0.01 mmol) and CuI (1.9 mg, 0.01 mmol) were added to a mixture of toluene (3 mL) and Et3N (3 mL). The mixture was stirred under N2 atmosphere at 80 ˚C for 72 h, and then the solvent was evaporated under vacuum. The polymeriza-tion was carried out according to the method for polymer P1. A dark blue powder was obtained by filtration, further washed with MeOH, and then dried under vacuum for 24 h to afford a yield of 54%. ¹H NMR (300 MHz, CDCl3): δ = 7.55-7.51 (br, 5 H), 7.32-7.31 (br, 2 H), 4.17-4.15 (br, 12 H), 3.83-3.80 (br, 12 H), 3.65-3.64 (br, 12 H), 3.52-3.50 (br, 12 H), 3.39-3.40 (br, 18 H), 2.75-2.68 (br, 6 H), 1.55 (br, 6 H). FT-IR (KBr): 3445, 2922, 2853, 1530, 1399, 1315, 1272, 1237, 1182, 1011, 1107, 725, 586 cm. P3 BODIPY dye 3 (37 mg, 0.1 mol) and monomer 10 (37 mg, 0.1 mmol) were added to a 5 mL Schlenk flask. Pd(PPh3)4 (12.0 mg, 0.01 mmol) and CuI (1.9 mg, 0.01 mmol) were added to a mixture of toluene (3 mL) and Et3N (3 mL). The mixture was stirred under N2 atmosphere at 80 ˚C for 72 h, and then the solvent was evaporated under vacuum. The polymerization was carried out according to the method for polymer P1. A dark blue powder was obtained by filtration, further washed with MeOH, and then dried under vacuum for 24 h to afford a yield of 62%. ¹H NMR (300 MHz, CDCl3): δ = 7.71-7.70 (br, 2 H), 7.53-7.54 (br, 5 H), 4.05-4.02 (br, 4 H), 2.70-2.65 (br, 12 H), 2.05 (br, 3 H), 1.55-1.65 (br, 15 H), 1.28-1.27 (br, 6 H). FT-IR (KBr): 3438, 2924, 2363, 1637, 1527, 1384, 1315, 1261, 1097, 804 cm.