Synlett 2012; 23(8): 1230-1234
DOI: 10.1055/s-0031-1290968
letter
© Georg Thieme Verlag Stuttgart · New York

Transition Metals in Organic Synthesis, Part 100:[ 1 ] Highly Efficient Palla­dium(II)-Catalyzed Oxidative Cyclization to the 1,7,8-Trioxygenated Carbazole Alkaloid Murrayastine

Laurent Huet
Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany, Fax: +49(351)46337030   Email: hans-joachim.knoelker@tu-dresden.de
,
Ronny Forke
Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany, Fax: +49(351)46337030   Email: hans-joachim.knoelker@tu-dresden.de
,
Anne Jäger
Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany, Fax: +49(351)46337030   Email: hans-joachim.knoelker@tu-dresden.de
,
Hans-Joachim Knölker*
Department Chemie, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany, Fax: +49(351)46337030   Email: hans-joachim.knoelker@tu-dresden.de
› Author Affiliations
Further Information

Publication History

Received: 14 March 2012

Accepted after revision: 03 April 2012

Publication Date:
26 April 2012 (online)


Abstract

Consecutive palladium-catalyzed C–N and C–C bond formation provides an efficient route to the 1,7,8-trioxygenated carbazole alkaloid murrayastine.

 
  • References and Notes

  • 1 For part 99, see: Gensch T, Rönnefahrt M, Czerwonka R, Jäger A, Kataeva O, Bauer I, Knölker H.-J. Chem.–Eur. J. 2012; 18: 770
    • 2a Chakraborty DP, Roy S In Progress in the Chemistry of Organic Natural Products . Vol. 57. Herz W, Grisebach H, Kirby GW, Steglich W, Tamm C. Springer; Wien: 1991: 71
    • 2b Chakraborty DP In The Alkaloids . Vol. 44. Cordell GA. Academic Press; New York: 1993: 257
    • 3a Knölker H.-J, Reddy KR. Chem. Rev. 2002; 102: 4303
    • 3b Knölker H.-J. Top. Curr. Chem. 2005; 244: 115
    • 3c Knölker H.-J, Reddy KR In The Alkaloids . Vol. 65. Cordell GA. Academic Press; Amsterdam: 2008: 1
    • 3d Schmidt AW, Reddy KR, Knölker H.-J. Chem. Rev. 2012; 112 DOI: 10.1021/cr200447s.
    • 4a Knölker H.-J. Curr. Org. Synth. 2004; 1: 309
    • 4b Fröhner W, Krahl MP, Reddy KR, Knölker H.-J. Heterocycles 2004; 63: 2393
    • 4c Gruner KK, Knölker H.-J In Heterocycles in Natural Product Synthesis . Majumdar KC, Chattopadhyay SK. Wiley-VCH; Weinheim: 2011: 341
    • 5a Pindur U. Chimia 1990; 44: 406
    • 5b Bergman J, Pelcman B. Pure Appl. Chem. 1990; 62: 1967
    • 5c Kawasaki T, Sakamoto M. J. Indian Chem. Soc. 1994; 71: 443
    • 5d Moody CJ. Synlett 1994; 681
    • 5e Hibino S, Sugino E In Advances in Nitrogen Heterocycles . Vol. 1. Moody CJ. JAI Press; Greenwich (CT, USA): 1995: 205
    • 5f Kirsch GH. Curr. Org. Chem. 2001; 5: 507
    • 5g Lemster T, Pindur U. Recent Res. Dev. Org. Bioorg. Chem. 2002; 5: 99
    • 5h Yamabuki A, Fujinawa H, Choshi T, Tohyama S, Matsumoto K, Ohmura K, Nobuhiro J, Hibino S. Tetrahedron Lett. 2006; 47: 5859
    • 5i Bedford RB, Betham M. J. Org. Chem. 2006; 71: 9403
    • 5j Yamamoto M, Matsubara S. Chem. Lett. 2007; 36: 172
    • 5k Liu Z, Larock RC. Tetrahedron 2007; 63: 347
    • 5l Ackermann L, Althammer A. Angew. Chem. Int. Ed. 2007; 46: 1627
    • 5m Lebold TP, Kerr MA. Org. Lett. 2007; 9: 1883
    • 5n StJean DJ. Jr, Poon SF, Schwarzbach JL. Org. Lett. 2007; 9: 4893
    • 5o Liu C.-Y, Knochel P. J. Org. Chem. 2007; 72: 7106
    • 5p Naffziger MR, Ashburn BO, Perkins JR, Carter RG. J. Org. Chem. 2007; 72: 9857
    • 5q Sreenivas DK, Nagarajan R. Synthesis 2011; 3195
    • 5r Youn SW, Bihn JH, Kim BS. Org. Lett. 2011; 13: 3738
    • 5s Yamuma E, Zeller M, Prasad KJ. R. Tetrahedron Lett. 2012; 53: 1514
    • 5t Viji M, Nagarajan R. Tetrahedron 2012; 68: 2453
    • 7a Knölker H.-J, Bauermeister M, Bläser D, Boese R, Pannek J.-B. Angew. Chem., Int. Ed. Engl. 1989; 28: 223 ; Angew. Chem. 1989, 101, 225
    • 7b Knölker H.-J, Bauermeister M. J. Chem. Soc., Chem. Commun. 1989; 1468
    • 7c Knölker H.-J, Bauermeister M. J. Chem. Soc., Chem. Commun. 1990; 664
    • 7d Knölker H.-J, Bauermeister M. Heterocycles 1991; 32: 2443
    • 7e Knölker H.-J, Bauermeister M, Pannek J.-B. Chem. Ber. 1992; 125: 2783
    • 7f Knölker H.-J, Bauermeister M, Pannek J.-B, Bläser D, Boese R. Tetrahedron 1993; 49: 841
    • 7g Knölker H.-J, Bauermeister M. Helv. Chim. Acta 1993; 76: 2500
    • 7h Knölker H.-J, Bauermeister M. Tetrahedron 1993; 49: 11221
    • 7i Knölker H.-J, Bauermeister M, Pannek J.-B, Wolpert M. Synthesis 1995; 397
    • 7j Knölker H.-J, Hopfmann T. Tetrahedron Lett. 1995; 36: 5339
    • 7k Knölker H.-J, Fröhner W. Tetrahedron Lett. 1997; 38: 1535
    • 7l Knölker H.-J, Baum E, Hopfmann T. Tetrahedron 1999; 55: 10391
    • 7m Knölker H.-J, Fröhner W. Tetrahedron Lett. 1999; 40: 6915
    • 7n Knölker H.-J, Wolpert M. Tetrahedron 2003; 59: 5317
    • 7o Knölker H.-J, Fröhner W, Reddy KR. Eur. J. Org. Chem. 2003; 740
    • 7p Kataeva O, Krahl MP, Knölker H.-J. Org. Biomol. Chem. 2005; 3: 3099
    • 7q Czerwonka R, Reddy KR, Baum E, Knölker H.-J. Chem. Commun. 2006; 711
    • 7r Knott KE, Auschill S, Jäger A, Knölker H.-J. Chem. Commun. 2009; 1467
    • 7s Gruner KK, Hopfmann T, Matsumoto K, Jäger A, Katsuki T, Knölker H.-J. Org. Biomol. Chem. 2011; 9: 2057
    • 7t Thomas C, Kataeva O, Knölker H.-J. Synlett 2011; 2663
    • 7u Fröhner W, Reddy KR, Knölker H.-J. ARKIVOC 2012; (iii): 330
    • 8a Knölker H.-J In Modern Alkaloids . Fattorusso E, Taglialatela-Scafati O. Wiley-VCH; Weinheim: 2008: 475
    • 8b Knölker H.-J. Chem. Lett. 2009; 38: 8
    • 8c Bauer I, Knölker H.-J. Top. Curr. Chem. 2012; 309: 203
  • 9 Åkermark B, Eberson L, Jonsson E, Petersson E. J. Org. Chem. 1975; 40: 1365
    • 10a Miller RB, Moock T. Tetrahedron Lett. 1980; 21: 3319
    • 10b Ames DE, Opalko A. Tetrahedron 1984; 40: 1919
    • 10c Furukawa H, Yogo M, Ito C, Wu T.-S, Kuoh C.-S. Chem. Pharm. Bull. 1985; 33: 1320
    • 10d Yogo M, Ito C, Furukawa H. Chem. Pharm. Bull. 1991; 39: 328
    • 10e Bittner S, Krief P, Massil T. Synthesis 1991; 215
    • 10f Ito C, Nakagawa M, Wu T.-S, Furukawa H. Chem. Pharm. Bull. 1991; 39: 1688
    • 10g Hall RJ, Marchant J, Oliveira-Campos AM. F, Queiroz M.-JR. P, Shannon PV. R. J. Chem. Soc., Perkin Trans. 1 1992; 3439
    • 10h Knölker H.-J, O’Sullivan N. Tetrahedron Lett. 1994; 35: 1695
  • 11 Knölker H.-J, O’Sullivan N. Tetrahedron 1994; 50: 10893
    • 12a Knölker H.-J, Fröhner W. J. Chem. Soc., Perkin Trans. 1 1998; 173
    • 12b Knölker H.-J, Reddy KR, Wagner A. Tetrahedron Lett. 1998; 39: 8267
    • 12c Knölker H.-J, Fröhner W, Reddy KR. Synthesis 2002; 557
    • 12d Knölker H.-J, Reddy KR. Heterocycles 2003; 60: 1049
  • 13 Krahl MP, Jäger A, Krause T, Knölker H.-J. Org. Biomol. Chem. 2006; 4: 3215
  • 14 Forke R, Krahl MP, Krause T, Schlechtingen G, Knölker H.-J. Synlett 2007; 268
  • 16 Börger C, Knölker H.-J. Synlett 2008; 1698
  • 17 Schmidt M, Knölker H.-J. Synlett 2009; 2421
  • 18 Fuchsenberger M, Forke R, Knölker H.-J. Synlett 2011; 2056
  • 19 Furukawa H, Ito C, Yogo M, Wu T.-S. Chem. Pharm. Bull. 1986; 34: 2672
    • 21a Hartwig JF. Angew. Chem. Int. Ed. 1998; 37: 2046 ; Angew. Chem. 1998, 110, 2154
    • 21b Muci AR, Buchwald SL. Top. Curr. Chem. 2002; 219: 131
    • 21c Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338 ; Angew. Chem. 2008, 120, 6438
  • 22 Characteristic spectroscopic data for the diarylamine 8: pale yellow solid; mp 78 °C. IR (ATR): n = 3413, 3003, 2968, 2931, 2854, 2836, 1601, 1586, 1498, 1478, 1464, 1447, 1421, 1401, 1336, 1297, 1251, 1220, 1190, 1165, 1134, 1082, 1037, 993, 916, 934, 838, 808, 773, 739 cm–1. 1H NMR (500 MHz, CDCl3): δ = 2.33 (s, 3 H), 3.857 (s, 3 H), 3.863 (s, 3 H), 3.88 (s, 3 H), 5.90 (br s, 1 H), 6.46 (m, 1 H), 6.72–6.73 (m, 2 H), 6.92 (d, J = 2.4 Hz, 1 H), 6.93 (s, 1 H), 7.28 (d, J = 8.3 Hz, 1 H). 13C NMR and DEPT (125 MHz, CDCl3): δ = 21.20 (Me), 55.60 (Me), 55.78 (Me), 60.23 (Me), 103.44 (CH), 107.98 (CH), 111.78 (CH), 117.50 (CH), 120.80 (CH), 123.85 (CH), 129.38 (C), 130.90 (C), 137.46 (C), 138.01 (C), 149.64 (C), 153.00 (C). MS (EI): m/z (%) = 273 (72) [M+], 258 (7), 243 (8), 227 (100), 184 (11). Anal. Calcd for C16H19NO3: C, 70.31; H, 7.01; N, 5.12. Found: C, 70.33; H, 6.87; N, 5.13
  • 23 Sridharan V, Martín MA, Menéndez JC. Synlett 2006; 2375
    • 24a Lafrance M, Fagnou K. J. Am. Chem. Soc. 2006; 128: 16496
    • 24b Watanabe T, Ueda S, Inuki S, Oishi S, Fujii N, Ohno H. Chem. Commun. 2007; 4516
    • 24c Liégault B, Lee D, Huestis MP, Stuart DR, Fagnou K. J. Org. Chem. 2008; 73: 5022
  • 25 Experimental Procedure for the Palladium(II)-Catalyzed Oxidative Cyclization to Murrayastine (1): The diarylamine 8 (200 mg, 0.732 mmol), K2CO3 (5.4 mg, 0.039 mmol) and pivalic acid (500 mg) were placed in a 10-mL test tube. The mixture was heated at 120 °C under air and recrystallized Pd(OAc)2 (5.0 mg, 0.022 mmol) was added. After 20 h of vigorous stirring at 120 °C in the presence of air, the reaction mixture was cooled to r.t. The residue was dissolved in EtOAc and washed several times with a sat. solution of K2CO3 and then with brine. After extraction with EtOAc, the combined organic layers were dried over Na2SO4. Removal of the solvent and flash chromatography (pentane–CH2Cl2–EtOAc, gradient elution from 40:5:1 to 18:5:1) on silica gel provided murrayastine (1; yield: 160 mg, 81%) and 3-(pivaloyloxymethyl)-1,7,8-trimethoxy-9H-carbazole (9; yield: 9.4 mg, 3%)
  • 26 Characteristic spectroscopic data for murrayastine (1): light yellow crystals; mp 101–102 °C. UV (MeOH): λmax = 223, 245, 253, 297, 321, 334 nm. IR (ATR): n = 3398, 3343, 3247, 2955, 2921, 2851, 1633, 1583, 1498, 1462, 1440, 1418, 1383, 1344, 1281, 1250, 1221, 1209, 1179, 1134, 1088, 1065, 1031, 1021, 971, 935, 819, 781 cm–1. 1H NMR (500 MHz, CDCl3): δ = 2.51 (s, 3 H), 3.97 (s, 3 H), 3.99 (s, 3 H), 4.02 (s, 3 H), 6.69 (s, 1 H), 6.86 (d, J = 8.5 Hz, 1 H), 7.38 (s, 1 H), 7.65 (d, J = 8.5 Hz, 1 H), 8.22 (br s, 1 H). 13C NMR and DEPT (125 MHz, CDCl3): δ = 21.90 (Me), 55.46 (Me), 56.77 (Me), 60.85 (Me), 106.10 (CH), 107.12 (CH), 112.21 (CH), 115.50 (CH), 119.57 (C), 124.79 (C), 128.09 (C), 129.58 (C), 133.84 (C), 134.21 (C), 145.24 (C), 149.99 (C). MS (EI): m/z (%) = 271 (100) [M+], 256 (46), 213 (46), 170 (19). Anal. Calcd for C16H17NO3: C, 70.83; H, 6.32; N, 5.16. Found: C, 71.04; H, 6.51; N, 4.90
  • 27 Crystal data for murrayastine (1): C16H17NO3, crystal size: 0.25 × 0.24 × 0.23 mm3, M = 271.31 g mol–1, orthorhombic, space group: Pbca, λ = 0.71073 Å, a = 9.158(1), b = 11.517(1), c = 26.488(3) Å, V = 2793.8(5) Å3, Z = 8, D calcd = 1.290 g cm–3, μ = 0.089 mm–1, T = 198(2) K, θ range = 3.23–27.00°; reflections collected: 23879, independent: 3044 (R int = 0.0611), 189 parameters. The structure was solved by direct methods and refined by full-matrix least-squares on F 2; final R indices [I > 2σ(I)]: R 1 = 0.0566, wR 2 = 0.1022; maximal residual electron density: 0.198 e Å–3. CCDC 870640 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.uk/data_request/cif
  • 28 Characteristic spectroscopic data for 3-(pivaloyloxymethyl)-1,7,8-trimethoxy-9H-carbazole (9): yellow solid. 1H NMR (600 MHz, CDCl3): δ = 1.24 (s, 9 H), 3.98 (s, 3 H), 4.01 (s, 3 H), 4.02 (s, 3 H), 5.25 (s, 2 H), 6.85 (s, 1 H), 6.89 (d, J = 8.5 Hz, 1 H), 7.57 (s, 1 H), 7.68 (d, J = 8.5 Hz, 1 H), 8.36 (br s, 1 H). 13C NMR and DEPT (150 MHz, CDCl3): δ = 27.20 (3 × Me), 38.79 (C), 55.55 (Me), 56.77 (Me), 60.89 (Me), 67.18 (CH2), 105.95 (CH), 106.51 (CH), 112.74 (CH), 115.64 (CH), 119.48 (C), 124.54 (C), 128.32 (C), 129.73 (C), 133.89 (C), 134.22 (C), 145.46 (C), 150.20 (C), 178.50 (C=O). MS (EI): m/z (%) = 371 (55) [M+], 270 (100)
    • For examples, see:

    • 29a Raposo MM. M, Oliveira-Campos AM. F, Shannon PV. R. J. Chem. Res., Synop. 1997; 354
    • 29b Desai LV, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 9542
    • 29c Gu R, Van Hecke K, Van Meervelt L, Toppet S, Dehaen W. Org. Biomol. Chem. 2006; 4: 3785
    • 29d Zheng X, Song B, Xu B. Eur. J. Org. Chem. 2010; 4376
    • 29e Jiang H, Chen H, Wang A, Liu X. Chem. Commun. 2010; 7259
    • 29f Chernyak N, Dudnik AS, Huang C, Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 8270
    • 29g Huang C, Chernyak N, Dudnik AS, Gevorgyan V. Adv. Synth. Catal. 2011; 353: 1285
    • 29h Wang L, Xia X.-D, Guo W, Chen J.-R, Xiao W.-J. Org. Biomol. Chem. 2011; 9: 6895
    • 29i Emmert MH, Cook AK, Xie YJ, Sanford MS. Angew. Chem. Int. Ed. 2011; 50: 9409 ; Angew. Chem. 2011, 123, 9581
    • For reviews, see:

    • 30a Becalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
    • 30b Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792 ; Angew. Chem. 2009, 121, 9976
    • 30c You S.-L, Xia J.-B. Top. Curr. Chem. 2010; 292: 165
    • 30d Han W, Ofial AR. Synlett 2011; 1951
    • 30e Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 30f Ackermann L. Chem. Rev. 2011; 111: 1315
    • 31a Choi TA, Czerwonka R, Fröhner W, Krahl MP, Reddy KR, Franzblau SG, Knölker H.-J. ChemMedChem 2006; 1: 812
    • 31b Choi TA, Czerwonka R, Forke R, Jäger A, Knöll J, Krahl MP, Krause T, Reddy KR, Franzblau SG, Knölker H.-J. Med. Chem. Res. 2008; 17: 374