Planta Med 2012; 78(17): 1857-1860
DOI: 10.1055/s-0032-1315386
Natural Product Chemistry
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Antiplasmodial and Antibacterial Activity of Compounds Isolated from Ormocarpum trichocarpum

Jude C. Chukwujekwu
1   Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Scottsville, South Africa
,
Carmen A. de Kock
2   Department of Medicine, Division of Pharmacology, University of Cape Town, Cape Town, South Africa
,
Peter J. Smith
2   Department of Medicine, Division of Pharmacology, University of Cape Town, Cape Town, South Africa
,
Fanie R. van Heerden
3   School of Chemistry and Physics, University of KwaZulu-Natal Pietermaritzburg, Scottsville, South Africa
,
Johannes van Staden
1   Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Scottsville, South Africa
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 25. Mai 2012
revised 04. September 2012

accepted 05. September 2012

Publikationsdatum:
11. Oktober 2012 (online)

Abstract

Using activity-guided fractionation based on in vitro antibacterial assays, five biflavonoids, among them two new ones, were isolated from the aerial parts of Ormocarpum trichocarpum. The isolated compounds showed MIC values in the range of 4.0 to 136.7 µM against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Klebsiella pneumonia and IC50 values in the range of 4.30 to 94.32 µM against the chloroquine-sensitive D10 Plasmodium falciparum strain.

Supporting Information

 
  • References

  • 1 Hutchings A, Scott AH, Lewis G, Cunningham AB. Zulu medicinal plants: an inventory. Scottsville: University of Natal Press; 1996
  • 2 Johns T, Faubert GM, Kokwaro JO, Mahunnah RLA, Kimanani EK. Anti-giardial activity of gastrointestinal remedies of the Luo of East Africa. J Ethnopharmacol 1995; 46: 17-23
  • 3 Ndubani P, Hojer B. Traditional healers and the treatment of sexually transmitted illnesses in rural Zambia. J Ethnopharmacol 1999; 67: 15-25
  • 4 Moshi MJ, Mbwambo ZH, Nondo RSO, Masimba PJ, Kamuhabwa A, Kapingu MC, Thomas P, Richards M. Evaluation of ethnomedical claims and brine shrimp toxicity of some plants used in Tanzania as traditional medicines. Afr J Trad CAM 2006; 3: 48-58
  • 5 Tabuti JRS, Kukunda CB, Waako PJ. Medicinal plants used by traditional medicine practitioners in the treatment of tuberculosis and related ailments in Uganda. J Ethnopharmacol 2010; 127: 130-136
  • 6 Dhooghe L, Maregesi S, Mincheva I, Ferreira D, Marais JPJ, Lemiere F, Matheeussen A, Cos P, Maes L, Vlietinck A, Apers S, Pieters L. Antiplasmodial activity of (I-3,II-3)-biflavonoids and other constituents from Ormocarpum kirkii . Phytochemistry 2010; 71: 785-791
  • 7 Maregesi S, Ngassapa OD, Pieters L, Vlietinck AJ. Ethnopharmacological survey of the Bunda district, Tanzania: plants used to treat infectious diseases. J Ethnopharmacol 2007; 113: 457-470
  • 8 Maregesi S, Van Miert S, Pannecouque C, Haddad MHF, Hermans N, Wright CW, Vlietinck AJ, Apers S, Pieters L. Screening of Tanzanian medicinal plants against Plasmodium falciparum and human immunodeficiency virus. Planta Med 2010; 76: 195-201
  • 9 Nyandat E, Hassanali A, De Vicente Y, Multari G, Galeffi C. The 7,7″-β-diglucoside of (2S,3R)-chamaejasmin from Ormocarpum kirkii . Phytochemistry 1990; 29: 2361-2364
  • 10 Xu YJ, Capiatrano R, Dhooghe L, Foubert K, Lemière F, Maregesi S, Baldé A, Apers S, Pieters L. Herbal medicines and infectious diseases: characterization by LC-SPE-NMR of some medicinal plant extracts used against malaria. Planta Med 2011; 77: 1139-1148
  • 11 Xu YJ, Foubert K, Dhooghe L, Lemière F, Maregesi S, Coleman CM, Zou Y, Ferreira D, Apers S, Pieters L. Rapid isolation and identification of minor natural products by LC–MS, LC–SPE–NMR and ECD: isoflavanones, biflavanones and bisdihydrocoumarins from Ormocarpum kirkii . Phytochemistry 2012; 79: 121-128
  • 12 Eloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med 1998; 29: 129-132
  • 13 Trager W, Jensen JB. Human malaria parasite in continuous culture. Science 1976; 193: 673-675
  • 14 Makler MT, Ries JM, Williams JA, Bancroft JE, Piper RC, Gibbins BL, Hinrichs D. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. J Am Soc Trop Med Hyg 1993; 48: 739-741
  • 15 Clarkson C, Campbell WE, Smith P. In vitro antiplasmodial activity of abietane and totarane diterpenes isolated from Harpagophytum procumbens (Devilʼs claw). Planta Med 2003; 69: 720-724
  • 16 Pillay P, Vleggaar R, Maharaj VJ, Smith PJ, Lategan CA. Isolation and identification of antiplasmodial sesquiterpene lactones from Oncosiphon piluliferum . J Ethnopharmacol 2007; 112: 71-76
  • 17 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63
  • 18 Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, Skehan P, Scudiero DA, Monks A, Boyd MR. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst 1990; 82: 1113-1118
  • 19 Niwa M, Otsuji S, Tatematsu H, Liu GQ, Chen XF, Hirata Y. Stereostructures of two biflavanones from Stellera chamaejasme . Chem Pharm Bull 1986; 34: 3249-3251
  • 20 Feng B, Pei Y, Hua H, Zhang Y. Biflavonoids from Stellera chamaejasme . Pharm Biol 2003; 41: 59-61
  • 21 Stermitz FR, Mead EW, Foderaro TA, Castro O. Diphysin, a 3,3″-dimeric 4-phenyldihydrocoumarin from Dyphys arobinioides . Phytochemistry 1993; 34: 287-289
  • 22 Nishimura S, Taki M, Takaishi S, Iiyima Y, Akiyama T. Structures of 4-aryl-coumarin (neoflavone) dimers isolated form Pistacia chinensis Bunge and their estrogen-like activity. Chem Pharm Bull 2000; 48: 505-508
  • 23 Ichino C, Kiyohara H, Soonthornchareonnon N, Chuakul W, Ishiyama A, Sekiguchi H, Namatame M, Otoguro K, Omura S, Yamada H. Antimalarial activity of biflavonoids from Ochn ainterrima . Planta Med 2006; 72: 611-614
  • 24 Niwa M, Chen XF, Liu GQ, Tatematsu H, Hirata Y. Structure of isochamaejasmin from Stellera chamaejasme L. Chem Lett 1984; 13: 1587-1590
  • 25 Li J, Zhao W, Hu JL, Cao X, Yang J, Li XR. A new C-3/C-3″-biflavanone from the roots of Stellera chamaejasme L. Molecules 2011; 16: 6465-6469
  • 26 Liang S, Shen YH, Tian JM, Feng Y, Xiong Z, Zhang WD. Five new biflavonoids from Daphne aurantiaca . Helv Chim Acta 2011; 94: 1239-1245
  • 27 Songsiang U, Wanich S, Pitchuanchom S, Netsopa S, Uanporn K, Yenjai C. Bioactive constituents from the stems of Dalbergia parviflora . Fitoterapia 2009; 80: 427-431
  • 28 Ahmed MS, Galal AM, Ross SA, Ferreira D, ElSohly MA, Ibrahim ARS, Mossa JS, El-Feraly FS. A weakly antimalarial biflavanone from Rhus retinorrhoea . Phytochemistry 2001; 58: 599-602
  • 29 Che H, Park BK, Lim H, Kim HP, Chang HW, Jeong JH, Par H. Synthesis of biflavones having a 6-O-7″ linkage and effects on cyclooxygenase-2 and inducible nitric oxide synthase. Bioorg Med Chem Lett 2009; 19: 74-76