Synlett 2012; 23(12): 1775-1778
DOI: 10.1055/s-0032-1316537
letter
© Georg Thieme Verlag Stuttgart · New York

TBAHS-Catalyzed Synthesis of 2-Dihydroquinazolin-2-ylquinoline: An Efficient and Practical Synthesis of Naturally Occurring Alkaloids Luotonin A, B, and E

Lingaiah Nagarapu*
Organic Chemistry Division-II, Indian Institute of Chemical Technology (CSIR), Tarnaka, Hyderabad 500607, India, Fax: +91(40)27193382   Email: lnagarapuiict@yahoo.com   Email: nagarapu@iict.res.in
,
Hanmant K. Gaikwad
Organic Chemistry Division-II, Indian Institute of Chemical Technology (CSIR), Tarnaka, Hyderabad 500607, India, Fax: +91(40)27193382   Email: lnagarapuiict@yahoo.com   Email: nagarapu@iict.res.in
,
Rajashaker Bantu
Organic Chemistry Division-II, Indian Institute of Chemical Technology (CSIR), Tarnaka, Hyderabad 500607, India, Fax: +91(40)27193382   Email: lnagarapuiict@yahoo.com   Email: nagarapu@iict.res.in
› Author Affiliations
Further Information

Publication History

Received: 04 April 2012

Accepted after revision: 19 May 2012

Publication Date:
29 June 2012 (online)


Abstract

A synthesis of 2-dihydroquinazolin-2-ylquinoline using a phase-transfer catalyst (TBAHS) in semi-aqueous phase, followed by Mitsunobu cyclization as key steps for an efficient and practical synthesis of naturally occurring alkaloids luotonin A, B, and E starting from o-nitrobenzaldehyde is reported. The new approach presents the advantage of a shorter route with high overall yield (57%, 45%, and 37%, respectively) and ease of operation.

Supporting Information

 
  • References and Notes

    • 1a Ma Z.-Z, Hano Y, Nomura T, Chen Y.-J. Heterocycles 1997; 46: 541
    • 1b Ma Z.-Z, Hano Y, Nomura T, Chen Y.-J. Heterocycles 1999; 51: 1883
    • 1c Ma Z.-Z, Hano Y, Nomura T, Chen Y.-J. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 1999; 41: 547 ; Chem. Abstr. 2000, 132, 234276
    • 1d Ma Z.-Z, Hano Y, Nomura T, Chen Y.-J. Phytochemistry 2000; 53: 1075
  • 2 Thomas CJ, Rahier NJ, Hecht SM. Bioorg. Med. Chem. 2004; 12: 1585
    • 3a Ma Z.-Z, Hano Y, Nomura T, Chen Y.-J. Bioorg. Med. Chem. Lett. 2004; 14: 1193
    • 3b Cagir A, Jones SH, Gao R, Eisenhauer BM, Hecht SM. J. Am. Chem. Soc. 2003; 125: 13628
    • 3c Zhang Q, Rivkin A, Curran DP. J. Am. Chem. Soc. 2002; 124: 5774
    • 3d Blagg BS. J, Boger DL. Tetrahedron 2002; 58: 6343
    • 3e Curran DP, Du W. Org. Lett. 2002; 4: 3215
    • 3f Comins DL, Nolan JM. Org. Lett. 2001; 3: 4255
    • 3g Toyota M, Komori C, Ihara M. J. Org. Chem. 2000; 65: 7110
    • 4a Jahng Y, Liang JL, Cha C. Molecules 2011; 16: 4861
    • 4b Ju Y, Lu FF, Li C. Org. Lett. 2009; 11: 3582
    • 4c Liang Y, Jiang X, Yu Z.-X. Org. Lett. 2009; 11: 5302
    • 4d Sridharan V, Ribelles P, Ramos MT, Menendez JC. J. Org. Chem. 2009; 74: 5715
    • 4e Nacro K, Zha C, Guzzo PR, Herr RJ, Peace D, Friedrich TD. Bioorg. Med. Chem. 2007; 15: 4237
    • 4f Zhou H.-B, Liu G.-S, Yao Z.-J. J. Org. Chem. 2007; 72: 6270
    • 4g Mason JJ, Bergman J. Org. Biomol. Chem. 2007; 5: 2486
    • 4h Servais A, Azzouz M, Lopes D, Courillon C, Malacria M. Angew. Chem. Int. Ed. 2007; 46: 576
    • 4i Bowman WR, Elsegood MR. J, Stein T, Weaver GW. Org. Biomol. Chem. 2007; 5: 103
    • 4j Bowman WR, Cloonan MO, Fletcher AJ, Stein T. Org. Biomol. Chem. 2005; 3: 1460
    • 4k Tangirala R, Antony S, Agama K, Pommier Y, Curran DP. Synlett 2005; 2843
    • 4l Twin H, Batey RA. Org. Lett. 2004; 6: 4913
    • 4m Dallavalle S, Merlini L, Beretta GL, Tinelli S, Zunino F. Bioorg. Med. Chem. Lett. 2004; 14: 5757
    • 4n Cagir A, Jones SH, Eisenhauer BM, Gao R, Hecht SM. Bioorg. Med. Chem. Lett. 2004; 14: 2051
    • 4o Cagir A, Eisenhauer BM, Gao R, Thomas SJ, Hecht SM. Bioorg. Med. Chem. Lett. 2004; 12: 6287
    • 4p Chavan SP, Sivappa R. Tetrahedron 2004; 60: 9931
    • 4q Harayama T, Hori A, Serban G, Morikami Y, Matsumoto T, Abe H, Takeuchi Y. Tetrahedron 2004; 60: 10645
    • 4r Toyota M, Komori C, Ihara M. ARKIVOC 2003; (viii): 15
    • 4s Lee ES, Park J.-G, Jahng Y. Tetrahedron Lett. 2003; 44: 1883
    • 4t Osborne D, Stevenson PJ. Tetrahedron Lett. 2002; 43: 5469
    • 4u Yadav JS, Reddy BV. S. Tetrahedron Lett. 2002; 43: 1905
    • 4v Dallavalle S, Merlini L. Tetrahedron Lett. 2002; 43: 1835
    • 4w Toyota M, Komori C, Ihara M. Heterocycles 2002; 56: 101
    • 4x Ma Z.-Z, Hano Y, Nomura T, Chen Y.-J. Heterocycles 1999; 51: 1593
    • 4y Kelly TR, Chamberland S, Silva RA. Tetrahedron Lett. 1999; 40: 2723
    • 4z Wang H, Ganesan A. Tetrahedron Lett. 1998; 39: 9097
  • 5 Argade NP, Mhaske SB. J. Org. Chem. 2004; 69: 4563
  • 6 Chu H.-Y, Tseng M.-C, Chu Y.-W, Tsai H.-P, Lin C.-M, Hwang J. Org. Lett. 2011; 13: 920
  • 7 Nagarapu L, Gaikwad HK, Palem JD, Venkatesh R, Bantu R, Sridhar B. Synth. Commun. 2012; DOI: 10.1080/00397911.2011.592624
  • 8 Tripathi RP, Tewari N, Dwivedi N. Tetrahedron Lett. 2004; 45: 9011
    • 9a Zhou J, Fang F. J. Org. Chem. 2011; 76: 7730
    • 9b Gao L, Ji H, Rong L, Tang D, Zha Y, Shi Y, Tu S. J. Heterocycl. Chem. 2011; 48: 957
    • 9c Bunce RA, Nammalwar B. J. Heterocycl. Chem. 2011; 48: 991
    • 9d Shaterian HR, Oveisi AR, Honarmand M. Synth. Commun. 2010; 40: 1231 ; and references cited therein
    • 9e Zeng L.-Y, Cai C. J. Heterocycl. Chem. 2010; 47: 1035
    • 9f Rostamizadeh S, Amani AM, Aryan R, Ghaieni HR, Nasrin Shadjou N. Synth. Commun. 2008; 38: 3567
    • 9g Chena J, Wua D, Hea F, Liua M, Wua H, Dinga J, Su W. Tetrahedron Lett. 2008; 49: 3814
    • 9h Salehi P, Dabirib M, Zolfigolc MA, Baghbanzadehb M. Synlett 2005; 1155
    • 9i Abdel-Jalil RJ, Voelter W, Saeed M. Tetrahedron Lett. 2004; 45: 3475
    • 9j Shi DQ, Rong LC, Wang JX, Zhuang QY, Wang XS, Hu HW. Tetrahedron Lett. 2003; 44: 3199
    • 9k Hour MJ, Huang LJ, Kuo SC, Xia Y, Bastow K, Nakanishi Y, Hamel E, Lee KH. J. Med. Chem. 2000; 43: 4479
    • 10a Nagarapu L, Gaikwad HK, Sarikonda K, Mateti J, Bantu R, Madhuri KM, Kalvendi SV. Eur. J. Med. Chem. 2010; 4720
    • 10b Nagarapu L, Gaikwad HK, Bantu R, Sheeba Rani M. Eur. J. Med. Chem. 2011; 2152
    • 10c Nagarapu L, Mateti J, Gaikwad HK, Bantu R, Sheeba Rani M, Subhashini NP. J. Bioorg. Med. Chem. Lett. 2011; 21: 4138
    • 10d Nagarapu L, Gaikwad HK, Bantu R, Ganesh Kumar C, Pombala S. Tetrahedron Lett. 2012; 53: 1287
  • 11 General Procedure for the Synthesis of 2-Dihydroquinazolin-2-ylquinoline (6a)
    Aldehyde 4 (4 g, 17.46 mmol), o-aminobenzamide (2.38 g, 17.46 mmol), and TBAHS (1.8 g, 5.42 mmol) were added to MeOH–H2O (5 mL, 1:1) at r.t. The resulting mixture was heated at 80 °C for 0.5 h, and completion of the reaction was monitored by TLC (EtOAc–hexane = 7:3). After completion of the reaction, reaction mixture was allowed to cool, diluted with H2O, and extracted with EtOAc. The organic layer were combined and washed thoroughly with sat. aq NaCl, dried over Na2SO4. The organic layer was evaporated under vacuum, the residue obtained was subjected to chroma-tography on silica gel. The desired 2-dihydroquinazolin-2-ylquinoline (6a) was obtained in 95% yield; mp 194–196 °C. IR (KBr): νmax = 3327, 3247, 2924, 1710, 1653, 1611, 1511, 1137, 1018, 776, 747 cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 1.48 (t, J = 7.17 Hz, 3 H, CH3), 4.48 (q, J = 7.17 Hz, 2 H, CH2), 6.47 (br s, 1 H, NH), 6.53 (s, 1 H, CH), 6.66 (t, J = 8.28 Hz, 2 H, ArH), 7.11 (t, J = 7.65 Hz, 1 H, ArH), 7.60 (t, J = 7.36 Hz, 1 H, ArH), 7.65–7.83 (m, 3 H, ArH), 7.90–8.03 (m, 2 H, ArH), 8.89 (s, 1 H, NH). 13C NMR (75 MHz, DMSO-d 6): δ = 14.19, 61.38, 71.79, 120.76, 124.81, 126.52, 126.98, 127.18, 127.69, 127.87, 129.07, 130.16 (2 C), 130.67, 134.18 (2 C), 138.03, 146.84, 158.80, 165.37. HRMS (ESI+): m/z calcd for C20H17N3O3 [M + Na]+: 370.1167; found: 370.1173