Synthesis 2012; 44(20): 3109-3128
DOI: 10.1055/s-0032-1316778
review
© Georg Thieme Verlag Stuttgart · New York

1,6-Conjugate Addition of Nucleophiles to α,β,γ,δ-Diunsaturated Systems

Eduarda M. P. Silva
Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal   Fax: +351(234)370714   Email: artur.silva@ua.pt
,
Artur M. S. Silva*
Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal   Fax: +351(234)370714   Email: artur.silva@ua.pt
› Author Affiliations
Further Information

Publication History

Received: 01 July 2012

Accepted after revision: 07 August 2012

Publication Date:
12 September 2012 (online)


Abstract

Herein, an overview of the most important developments and concepts related to the 1,6-conjugate addition reactions are reviewed.

1 Introduction

2 Transition-Metal-Catalyzed 1,6-Conjugate Additions

2.1 Copper-Mediated Reactions

2.2 Iron-Mediated Reactions

2.3 Rhodium- and Iridium-Mediated Reactions

3 Organocatalyzed 1,6-Conjugate Additions

4 Other Methods

5 Conclusions

 
  • References

  • 1 Perlmutter P. Conjugate Addition Reactions in Organic Synthesis. Pergamon Press; Oxford: 1992
    • 2a Vuagnoux-d’Augustin M, Alexakis A. Chem.–Eur. J. 2007; 13: 9647
    • 2b Alexakis A, Benhaim C. Eur. J. Org. Chem. 2002; 3221
    • 2c Krause N, Hoffmann-Röder A. Synthesis 2001; 171
    • 2d Hayashi T. Acc. Chem. Res. 2000; 33: 354
  • 3 Almasi D, Alonso DA, Najera C. Tetrahedron: Asymmetry 2007; 18: 299
    • 4a Csákÿ AG, Herrán G, Murcia MC. Chem. Soc. Rev. 2010; 39: 4080
    • 4b Frederik MA, Hulce M. Tetrahedron 1997; 53: 10197
    • 4c Ralls JW. Chem. Rev. 1959; 59: 329
  • 5 Krause N, Thorand S. Inorg. Chim. Acta 1999; 296: 1
  • 6 Näf F, Degen P, Ohloff G. Helv. Chim. Acta 1972; 55: 82
  • 7 Corey EJ, Kim CU, Chen RH. K, Takeda M. J. Am. Chem. Soc. 1972; 94: 4395
  • 8 Yamamoto Y, Yamamoto S, Yatagai H, Ishihara Y, Maruyama K. J. Org. Chem. 1982; 47: 119
    • 9a Hulce M. Tetrahedron Lett. 1988; 29: 5851
    • 9b Cheng M, Hulce M. J. Org. Chem. 1990; 55: 964
    • 9c Krause N. Chem. Ber. 1990; 123: 2173
    • 9d Krause N, Gerold A. Angew. Chem., Int. Ed. Engl. 1997; 36: 186 ; and references therein
    • 9e Canisius J, Gerold A, Krause N. Angew. Chem. Int. Ed. 1999; 38: 1644 ; and references therein
  • 10 Uerdingen M, Krause N. Tetrahedron 2000; 56: 2799
  • 11 Yoshikai N, Yamashita T, Nakamura E. Chem.–Asian J. 2006; 1: 322
  • 12 Fillion E, Wilsily A, Liao E.-T. Tetrahedron: Asymmetry 2006; 17: 2957
  • 13 Hartog T, Harutyunyan SR, Font D, Minnaard AJ, Feringa BL. Angew. Chem. Int. Ed. 2008; 47: 398
  • 14 Hartog T, Dijken DJ, Minnaard AJ, Feringa BL. Tetrahedron: Asymmetry 2010; 21: 1574
    • 15a Hénon H, Mauduit M, Alexakis A. Angew. Chem. Int. Ed. 2008; 47: 9122
    • 15b Tissot M, Poggiali D, Hénon H, Müller D, Guénée L, Mauduit M, Alexakis A. Chem.–Eur. J. 2012; 18: 8731
  • 16 Lee K, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 2898
  • 17 Tissot M, Müller D, Belot S, Alexakis A. Org. Lett. 2010; 12: 2770
  • 18 Wencel-Delord J, Alexakis A, Crévisy C, Mauduit M. Org. Lett. 2010; 12: 4335
  • 19 Fukuhara K, Urabe H. Tetrahedron Lett. 2005; 46: 603
  • 20 Okada S, Arayama K, Murayama R, Ishizuka T, Hara K, Hirone N, Hata T, Urabe H. Angew. Chem. Int. Ed. 2008; 47: 6860
  • 21 Hayashi T, Tokunaga N, Inoue K. Org. Lett. 2004; 6: 305
  • 22 Hayashi T, Yamamoto S, Tokunaga N. Angew. Chem. Int. Ed. 2005; 44: 4224
  • 23 Herrán G, Murcia C, Csákÿ AG. Org. Lett. 2005; 7: 5629
  • 24 Herrán G, Csákÿ AG. Synlett 2009; 585
    • 25a Tseng N.-W, Mancuso J, Lautens M. J. Am. Chem. Soc. 2006; 128: 5338
    • 25b Tseng N.-W, Lautens M. J. Org. Chem. 2009; 74: 2521
  • 26 Baba H, Chen J, Shinokubo H, Osuka A. Chem.–Eur. J. 2008; 14: 4256
  • 27 Nishimura T, Makino H, Nagaosa M, Hayashi T. J. Am. Chem. Soc. 2010; 132: 12865
  • 28 Roscales S, Salado IG, Csákÿ AG. Synlett 2011; 2234
  • 29 Nishimura T, Yasuhara Y, Hayashi T. Angew. Chem. Int. Ed. 2006; 45: 5164
  • 30 Nishimura T, Yasuhara Y, Sawano T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 7872
  • 31 Nishimura T, Noishiki A, Hayashi T. Chem. Commun. 2012; 48: 973
  • 32 Bernardi L, López-Cantarero J, Niess B, Jørgensen KA. J. Am. Chem. Soc. 2007; 129: 5772
  • 33 Murphy JJ, Quintard A, McArdle P, Alexakis A, Stephens JC. Angew. Chem. Int. Ed. 2011; 50: 5095
  • 34 Sun H.-W, Liao Y.-H, Wu Z.-J, Wang H.-Y, Zhang X.-M, Yuan W.-C. Tetrahedron 2011; 67: 3991
  • 35 Tian X, Liu Y, Melchiorre P. Angew. Chem. Int. Ed. 2012; 51: 6439
  • 36 Gong H, Andrews RS, Zuccarello JL, Lee SJ, Gagné MR. Org. Lett. 2009; 11: 879
  • 37 Silva EM. P, Silva AM. S, Cavaleiro JA. S. Synlett 2011; 2740
  • 38 Ballini R, Bosica G, Fiorini D. Tetrahedron Lett. 2001; 42: 8471
  • 39 Caro B, Le Poul P, Robin-Le Guen F, Sénéchal-Tocquer M.-C, Saillard J.-Y, Kahlal S, Ouahab L, Golhen S. Eur. J. Org. Chem. 2000; 577
  • 40 Kusama H, Sawada T, Okita A, Shiozawa F, Iwasawa N. Org. Lett. 2006; 8: 1077
  • 41 Brooks JL, Caruana PA, Frontier AJ. J. Am. Chem. Soc. 2011; 133: 12454
  • 42 Brocchini SJ, Lawton RG. Tetrahedron Lett. 1997; 38: 6319