Planta Med 2013; 79(17): 1680-1684
DOI: 10.1055/s-0033-1350952
Natural Product Chemistry
Letters
Georg Thieme Verlag KG Stuttgart · New York

Bioactive Sesquiterpenes from the Essential Oil of Thuja orientalis

Ki Hyun Kim
1   Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Jangan-ku, Suwon, Gyeonggi-do, Republic of Korea
,
Eunjung Moon
2   College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
,
Sun Yeou Kim
2   College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
3   Gachon Institute of Pharmaceutical Sciences, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
,
Sang Un Choi
4   Korea Research Institute of Chemical Technology, Teajeon, Republic of Korea
,
Mi Won Son
5   Dong-A Pharm Institute, Kiheung, Youngin, Republic of Korea
,
Sang Zin Choi
5   Dong-A Pharm Institute, Kiheung, Youngin, Republic of Korea
,
Kang Ro Lee
1   Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University, Jangan-ku, Suwon, Gyeonggi-do, Republic of Korea
› Author Affiliations
Further Information

Publication History

received 01 July 2013
revised 03 September 2013

accepted 17 September 2013

Publication Date:
17 October 2013 (online)

Abstract

A phytochemical investigation on the essential oil of Thuja orientalis resulted in the isolation and identification of three new sesquiterpenes, 3α-methoxy-4α-epoxythujopsane (1), Δ3,15-4β-epoxythujopsene (2), and Δ3,4-thujopsen-2,15-diol (3), together with eight known sesquiterpenoids (411). The structures of these new compounds were elucidated based on spectroscopic data analyses including extensive 2D-NMR data and HR-ESIMS. The full assignments of 1H and 13C NMR chemical shifts for thujopsadiene (4) were obtained by 2D-NMR for the first time. All compounds (111) showed antiproliferative activities against the SK-OV-3 and SK-MEL-2 cell lines with IC50 values of 5.85–28.64 µM. In addition, compounds 1, 3, 4, 7, 8, and 9 significantly inhibited nitric oxide production in lipopolysaccharide-activated BV-2 cells with IC50 values of 3.93–17.85 µM without cell toxicity.

Supporting Information

 
  • References

  • 1 Liang T, Qin Y, Liang N. Study on anti-inflammatory effect of Biota orientalis . J Chin Pharm Univ 2001; 32: 224-226
  • 2 Lu Y, Liu Z, Wang Z, Wei D. Quality evaluation of Platycladus orientalis (L.) Franco through simultaneous determination of four bioactive flavonoids by high-performance liquid chromatography. J Pharm Biomed Anal 2006; 41: 1186-1190
  • 3 Sung SH, Koo KA, Lim HK, Lee HS, Cho JH, Kim HS, Kim YC. Diterpenes of Biota orientalis leaves. Kor J Pharmacogn 1998; 29: 347-352
  • 4 Srivastava P, Kumar P, Singh DK, Singh VK. Biological properties of Thuja orientalis Linn. Adv Life Sci 2012; 2: 17-20
  • 5 Asili J, Asghari G, Sadat Ebrahimi SE, Jaroszewski JW. Influence of extraction methods on the yield and chemical composition of essential oil of Platycladus orientalis (L.) Franco. Jundishapur J Nat Pharm Prod 2007; 2: 25-33
  • 6 Guleria S, Kumar A, Tiku AK. Chemical composition and fungitoxic activity of essential oil of Thuja orientalis L. grown in the north-western Himalaya. Z Naturforsch C 2008; 63: 211-214
  • 7 Nickavar B, Amin G, Parhami S. Volatile constituents of the fruit and leaf oils of Thuja orientalis L. grown in Iran. Z Naturforsch C 2003; 58: 171-172
  • 8 Chen Y, Li S, Yang L, Jiang Z. Comparative study on chemical constituents of essential oils from several parts of Platycladus orientalis (L.) Franco. Linchan Huaxue Yu Gongye 1984; 4: 1-11
  • 9 Li Z, Liu S. Chemical constituents of essential oil from the fruit of Biota orientalis . Zhongguo Yaoxue Zazhi 1997; 32: 138-139
  • 10 Kim CS, Choi SU, Lee KR. Three new diterpenoids from the leaves of Thuja orientalis . Planta Med 2012; 78: 485-487
  • 11 Cool LG, Jiang K. Thujopsene- and cis-muurolane-related sesquiterpenoids from Cupressus bakeri . Phytochemistry 1995; 40: 177-181
  • 12 Sakamaki H, Kitanaka S, Chai W, Hayashida Y, Takagi Y, Horiuchi CA. Biotransformation of thujopsene by Caragana chamlagu . J Nat Prod 2001; 64: 630-631
  • 13 Nagahama S, Fuchinoue T, Tazaki M. Terpenoids. XI. Mayurone oxide. Bull Chem Soc Jpn 1988; 61: 4147-4148
  • 14 Fang JM, Chen YC, Wang BW, Cheng YS. Terpenes from heartwood of Juniperus chinensis . Phytochemistry 1996; 41: 1361-1365
  • 15 Abreu PM, Noronha RG. Volatile constituents of the rhizomes of Aframomum alboviolaceum (Ridley) K. Schum. from Guinea-Bissau. Flavour Fragr J 1997; 12: 79-83
  • 16 Nagahama S, Tazaki M, Kobayashi H, Sumimoto M. Sesquiterpene alcohols from Cryptomeria japonica and C. fortunei leaf oil. Phytochemistry 1993; 33: 879-882
  • 17 Zhang CX, Fang LJ, Bi FQ, Li YL. An enantioselective formal synthesis of (−)-thujopsene. Chin Chem Lett 2008; 19: 256-258
  • 18 Skehan P, Storeng R, Scudiero D, Monks A, Mcmahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 1990; 82: 1107-1112
  • 19 Jung HW, Kang SY, Park KH, Oh TW, Jung JK, Kim SH, Choi DJ, Park YK. Effect of the semen extract of Thuja orientalis on inflammatory responses in transient focal cerebral ischemia rat model and LPS-stimulated BV-2 microglia. Am J Chin Med 2013; 41: 99-117
  • 20 Kim JY, Kim HJ, Kim SM, Park KR, Jang HJ, Lee EH, Jung SH, Ahn KS. Methylene chloride fraction of the leaves of Thuja orientalis inhibits in vitro inflammatory biomarkers by blocking NF-κB and p 38 MAPK signaling and protects mice from lethal endotoxemia. J Ethnopharmacol 2011; 133: 687-695