Klin Monbl Augenheilkd 2014; 231(6): 611-618
DOI: 10.1055/s-0034-1368534
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Update Hornhautdystrophien: Neues nach der Erstveröffentlichung der IC3D-Klassifikation

Update on Corneal Dystrophies: New Insights Following First Publication of the IC3D Classification
C. Auw-Hädrich
1   Klinik für Augenheilkunde, Albert-Ludwigs Universität Freiburg
,
T. Reinhard
1   Klinik für Augenheilkunde, Albert-Ludwigs Universität Freiburg
,
C. Grünauer-Klövekorn
2   Praxisklinik Augenärzte am Markt, Halle
› Author Affiliations
Further Information

Publication History

eingereicht 25 March 2014

akzeptiert 07 May 2014

Publication Date:
18 June 2014 (online)

Zusammenfassung

In diesem Artikel sind neuere Erkenntnisse der Hornhautdystrophien nach der Veröffentlichung der IC3D-Klassifikation 2008 zusammengefasst, welche die Themen neue Mutationen, neue Phänotypen klinisch/histologisch, Erstbeschreibungen bekannter Mutationen bei bisher nicht erwähnten ethnischen Gruppen, neue Dystrophiebilder nach moderner Hornhautchirurgie und potenzielle neue konservative Therapieformen beinhalten.

Abstract

In this review we summarise the new insights into corneal dystrophies following publication of the IC3D classification in 2008. Topics covered are new mutations, new clinical/histological phenotypes, first descriptions of known mutations in previously not mentioned ethnic groups, new dystrophic entities after modern corneal surgery and potentially new types of conservative therapy.

 
  • Literatur

  • 1 Seto T, Fujiki K, Kishishita H et al. A novel mutation in the cornea-specific keratin 12 gene in Meesmann corneal dystrophy. Jpn J Ophthalmol 2008; 52: 224-226
  • 2 Szaflik JP, Ołdak M, Maksym RB et al. Genetics of Meesmann corneal dystrophy: a novel mutation in the keratin 3 gene in an asymptomatic family suggests genotype-phenotype correlation. Mol Vis 2008; 14: 1713-1718
  • 3 Franceschetti A. Hereditäre rezidivierende Erosion der Hornhaut. Z Augenheilk 1928; 66: 309-316
  • 4 Weiss JS, Møller HU, Lisch W et al. The IC3D classification of the corneal dystrophies. Cornea 2008; 27 (Suppl. 02) S1-S83
  • 5 Lisch W, Bron AJ, Munier FL et al. Franceschetti hereditary recurrent corneal erosion. Am J Ophthalmol 2012; 153: 1073.e4-1081.e4
  • 6 Wheeldon CE, de Karolyi BH, Patel DV et al. A novel phenotype-genotype relationship with a TGFBI exon 14 mutation in a pedigree with a unique corneal dystrophy of Bowmanʼs layer. Mol Vis 2008; 14: 1503-1512
  • 7 Kotoulas A, Kokotas H, Kopsidas K et al. A novel PIKFYVE mutation in fleck corneal dystrophy. Mol Vis 2011; 17: 2776-2781
  • 8 Witschel H, Sundmacher R. Bilateral recurrence of granular corneal dystrophy in the grafts. A clinico-pathologic study. Graefes Arch Clin Exp Ophthalmol 1979; 209: 179-188
  • 9 Sundmacher R, Spelsberg H, Reinhard T. Homologous penetrating central limbokeratoplasty in granular and lattice corneal dystrophy. Cornea 1999; 18: 664-670
  • 10 Spelsberg H, Reinhard T, Henke L et al. Penetrating limbo-keratoplasty for granular and lattice corneal dystrophy: survival of donor limbal stem cells and intermediate-term clinical results. Ophthalmology 2004; 111: 1528-1533
  • 11 Gruenauer-Kloevekorn C, Clausen I, Weidle E et al. TGFBI (BIGH3) gene mutations in German families: two novel mutations associated with unique clinical and histopathological findings. Br J Ophthalmol 2009; 93: 932-937
  • 12 Gruenauer-Kloevekorn C, Braeutigam S, Heinritz W et al. Macular corneal dystrophy: mutational spectrum in German patients, novel mutations and therapeutic options. Graefes Arch Clin Exp Ophthalmol 2008; 246: 1441-1447
  • 13 Afshari NA, Mullally JE, Afshari MA et al. Survey of patients with granular, lattice, avellino, and Reis-Bücklers corneal dystrophies for mutations in the BIGH3 and gelsolin genes. Arch Ophthalmol 2001; 119: 16-22
  • 14 Aldave AJ, Rayner SA, King JA et al. A unique corneal dystrophy of Bowmanʼs layer and stroma associated with the Gly623Asp mutation in the transforming growth factor beta-induced (TGFBI) gene. Ophthalmology 2005; 112: 1017-1022
  • 15 Auw-Haedrich C, Agostini H, Clausen I et al. A corneal dystrophy associated with transforming growth factor beta-induced Gly623Asp mutation an amyloidogenic phenotype. Ophthalmology 2009; 116: 46-51
  • 16 Zhu Y, Shentu X, Wang W. The TGFBI R555 W mutation induces a new granular corneal dystrophy type I phenotype. Mol Vis 2011; 17: 225-230
  • 17 Paliwal P, Gupta J, Tandon R et al. A novel TGFBI phenotype with amyloid deposits and Arg124Leu mutation. Ophthalmic Res 2011; 46: 164-167
  • 18 Ohnishi T, Sakimoto T, Sawa M. Case of lattice corneal dystrophy due to L527R mutation in the TGFBI gene with asymmetric corneal opacity in eye laterality. Jpn J Ophthalmol 2010; 54: 628-629
  • 19 Yu P, Gu Y, Jin F et al. p.Ala546 > Asp and p.Arg555 > Trp mutations of TGFBI gene and their clinical manifestations in two large Chinese families with granular corneal dystrophy type I. Genet Test 2008; 12: 421-425
  • 20 Dighiero P, Drunat S, Ellies P et al. A new mutation (A546 T) of the betaig-h3 gene responsible for a French lattice corneal dystrophy type IIIA. Am J Ophthalmol 2000; 129: 248-251
  • 21 Klintworth GK, Bao W, Afshari NA. Two mutations in the TGFBI (BIGH3) gene associated with lattice corneal dystrophy in an extensively studied family. Invest Ophthalmol Vis Sci 2004; 45: 1382-1388
  • 22 Kim TI, Kim T, Kim SW et al. Comparison of corneal deposits after LASIK and PRK in eyes with granular corneal dystrophy type II. J Refract Surg 2008; 24: 392-395
  • 23 Auw-Haedrich C, Loeffler KU, Sundmacher R et al. Characteristic distribution of deposits in recurrent granular corneal dystrophy. Ger J Ophthalmol 1996; 5: 132-136
  • 24 Miller A, Solomon R, Bloom A et al. Prevention of recurrent Reis-Bücklers dystrophy following excimer laser phototherapeutic keratectomy with topical mitomycin C. Cornea 2004; 23: 732-735
  • 25 Kim T, Pak JH, Chae J et al. Mitomycin C inhibits recurrent Avellino dystrophy after phototherapeutic keratectomy. Cornea 2006; 25: 220-223
  • 26 Kim T, Choi S, Lee HK et al. Mitomycin C induces apoptosis in cultured corneal fibroblasts derived from type II granular corneal dystrophy corneas. Mol Vis 2008; 14: 1222-1228
  • 27 Hemadevi B, Veitia RA, Srinivasan M et al. Identification of mutations in the SLC4A11 gene in patients with recessive congenital hereditary endothelial dystrophy. Arch Ophthalmol 2008; 126: 700-708
  • 28 Sundin OH, Jun AS, Broman KW et al. Linkage of late-onset Fuchs corneal dystrophy to a novel locus at 13 pTel-13q12.13. Invest Ophthalmol Vis Sci 2006; 47: 140-145
  • 29 Sundin OH, Broman KW, Chang HH et al. A common locus for late-onset Fuchs corneal dystrophy maps to 18q21.2-q21.32. Invest Ophthalmol Vis Sci 2006; 47: 3919-3926
  • 30 Riazuddin SA, Eghrari AO, Al-Saif A et al. Linkage of a mild late-onset phenotype of Fuchs corneal dystrophy to a novel locus at 5q33.1-q35.2. Invest Ophthalmol Vis Sci 2009; 50: 5667-5671
  • 31 Riazuddin SA, Zaghloul NA, Al-Saif A et al. Missense mutations in TCF8 cause late-onset Fuchs corneal dystrophy and interact with FCD4 on chromosome 9p. Am J Hum Genet 2010; 86: 45-53
  • 32 Riazuddin SA, McGlumphy EJ, Yeo WS et al. Replication of the TCF4 intronic variant in late-onset Fuchs corneal dystrophy and evidence of independence from the FCD2 locus. Invest Ophthalmol Vis Sci 2011; 52: 2825-2829
  • 33 Li YJ, Minear MA, Rimmler J et al. Replication of TCF4 through association and linkage studies in late-onset Fuchs endothelial corneal dystrophy. PLoS One 2011; 6: e18044
  • 34 Baratz KH, Tosakulwong N, Ryu E et al. E2-2 protein and Fuchsʼs corneal dystrophy. N Engl J Med 2010; 363: 1016-1024
  • 35 Afshari NA, Li YJ, Pericak-Vance MA et al. Genome-wide linkage scan in fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 2009; 50: 1093-1097
  • 36 Riazuddin SA, Parker DS, McGlumphy EJ et al. Mutations in LOXHD1, a recessive-deafness locus, cause dominant late-onset Fuchs corneal dystrophy. Am J Hum Genet 2012; 90: 533-539
  • 37 Vithana EN, Morgan PE, Ramprasad V et al. SLC4A11 mutations in Fuchs endothelial corneal dystrophy. Hum Mol Genet 2008; 17: 656-666
  • 38 Aldave AJ, Yellore VS, Yu F et al. Posterior polymorphous corneal dystrophy is associated with TCF8 gene mutations and abdominal hernia. Am J Med Genet A 2007; 143: 2549-2556
  • 39 Liskova P, Tuft SJ, Gwilliam R et al. Novel mutations in the ZEB1 gene identified in Czech and British patients with posterior polymorphous corneal dystrophy. Hum Mutat 2007; 28: 638
  • 40 Krafchak CM, Pawar H, Moroi SE et al. Mutations in TCF8 cause posterior polymorphous corneal dystrophy and ectopic expression of COL4A3 by corneal endothelial cells. Am J Hum Genet 2005; 77: 694-708
  • 41 Biswas S, Munier FL, Yardley J et al. Missense mutations in COL8A2, the gene encoding the alpha2 chain of type VIII collagen, cause two forms of corneal endothelial dystrophy. Hum Mol Genet 2001; 10: 2415-2423
  • 42 Gottsch JD, Sundin OH, Liu SH et al. Inheritance of a novel COL8A2 mutation defines a distinct early-onset subtype of fuchs corneal dystrophy. Invest Ophthalmol Vis Sci 2005; 46: 1934-1939
  • 43 Ziaei M, Barsam A, Mearza AA. Spontaneous corneal clearance despite graft removal in Descemet stripping endothelial keratoplasty in Fuchs endothelial dystrophy. Cornea 2013; 32: e164-e166
  • 44 Okumura N, Ueno M, Koizumi N et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci 2009; 50: 3680-3687
  • 45 Ziaei A, Schmedt T, Chen Y et al. Sulforaphane decreases endothelial cell apoptosis in fuchs endothelial corneal dystrophy: a novel treatment. Invest Ophthalmol Vis Sci 2013; 54: 6724-6734
  • 46 Higdon JV, Delage B, Williams DE et al. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 2007; 55: 224-236
  • 47 Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 2008; 269: 291-304
  • 48 Cheung KL, Kong AN. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J 2010; 12: 87-97
  • 49 Han KE, Chung WS, Kim T et al. Changes of clinical manifestation of granular corneal deposits because of recurrent corneal erosion in granular corneal dystrophy types 1 and 2. Cornea 2013; 32: e113-e120
  • 50 Mehta JS, Vithana EN, Venkataraman D et al. Analysis of conjunctival fibroblasts from a proband with Schnyder corneal dystrophy. Mol Vis 2008; 14: 1277-1281
  • 51 Battisti C, Dotti MT, Malandrini A et al. Schnyder corneal crystalline dystrophy: description of a new family with evidence of abnormal lipid storage in skin fibroblasts. Am J Med Genet 1998; 75: 35-39