Synlett 2014; 25(12): 1751-1755
DOI: 10.1055/s-0034-1378227
letter
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Diels–Alder Cycloadditions in the Synthesis of Two Enantiomeric Sets of Chiral Polyhydroxylated Pipecolic Acid Derivatives

Vera C. M. Duarte
Departamento de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal   Email: mja@quimica.uminho.pt
,
Maria J. Alves*
Departamento de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal   Email: mja@quimica.uminho.pt
,
António Gil Fortes
Departamento de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal   Email: mja@quimica.uminho.pt
› Author Affiliations
Further Information

Publication History

Received: 19 March 2014

Accepted after revision: 02 May 2014

Publication Date:
12 June 2014 (online)


Abstract

(2E)-Penta-2,4-dien-1-ol was combined with electrophilic tert-butyl 2H-azirine-3-carboxylate by using a Lewis acid-catalyzed self-assembled Diels–Alder methodology with 1,1′-binaphthalene-2,2′-diol (BINOL) as a chiral inductor. By changing the chirality of the BINOL inductor, both enantiomeric forms of the resulting cycloadducts could be obtained with high enantioselectivities and yields. Simple chemical transformations of the cyclo­adducts gave two types of polyhydroxylated pipecolic acids. The synthetic strategy provides the first reported synthesis of chain-branched pipecolic acids.

Supporting Information

 
  • References and Notes

    • 1a Hanessian S, McNaughton-Smith G, Lombart H.-G, Lubell WD. Tetrahedron 1997; 53: 12789
    • 1b Makara GM, Marshall GR. Tetrahedron Lett. 1997; 38: 5069
  • 2 Liu PS. J. Org. Chem. 1987; 52: 4717
  • 3 Ye X.-S, Sun F, Liu M, Li Q, Wang Y, Zhang G, Zhang L.-H, Zhang X.-L. J. Med. Chem. 2005; 48: 3688
    • 4a Tong MK, Ganem B. J. Am. Chem. Soc. 1988; 110: 312
    • 4b Martin OR, Saavedra OM. Tetrahedron Lett. 1995; 36: 799
    • 5a Couty F. Amino Acids 1999; 16: 297
    • 5b Kadouri-Puchot C, Comesse S. Amino Acids 2005; 29: 101
  • 6 Alves MJ, Costa FT, Duarte VC. M, Gil Fortes A, Martins JA, Micaelo NM. J. Org. Chem. 2011; 76: 9584
  • 7 Duarte VC. M, Faustino H, Alves MJ, Gil Fortes A, Micaelo N. Tetrahedron: Asymmetry 2013; 24: 1063
  • 8 Alves MJ, Gilchrist TL. Tetrahedron Lett. 1998; 39: 7579
  • 9 tert-Butyl [2S(R),6R(S)]-2-(Hydroxymethyl)-1-azabicyclo[4.1.0]hept-3-ene-6-carboxylate (7) and tert-Butyl [2S(R),6R(S)]-2,6-Bis(hydroxymethyl)-1,2,3,6-tetrahydropyridine-2-carboxylate (8) A 1.2 M solution of Me2Zn in toluene (1.19 mmol) was added to a solution of penta-2,4-dien-1-ol (6; 1.19 mmol) in dry toluene (6 mL) at 0 °C, and the mixture was stirred for 5 min. Separately, a 1.4 M solution of MeMgBr in toluene–THF (1.19 mmol) was added to a solution of (S)- or (R)-BINOL (1.19 mmol) in dry toluene (6 mL) at 0 °C, and the mixture was stirred for 5 min. The solution of the dienol and Me2Zn was diluted with dry toluene (10 mL) and added to the solution of the Grignard reagent and BINOL. The resulting mixture was stirred for 5 min and then cooled to –78 °C. A solution of t-butyl 2H-azirine-3-carboxylate (5; 1.19 mmol) in dry toluene (10 mL) was added during 5 min, and the temperature was allowed to rise gradually to –20 °C. The mixture was then stirred in a freezer for 24 h. A second portion of azirinecarboxylate 5 (1.19 mmol) was added, and the mixture was stirred for another 7 d. The reaction was quenched with sat. aq NaHCO3 (1 mL), and the mixture was filtered through a pad of Celite, which was washed with EtOAc (2 × 20 mL). The filtrates were combined and concentrated under reduced pressure to give an orange oil. This crude mixture was purified by dry-flash chromatography [silica gel, PE–Et2O (increasing polarity)]. The BINOL was eluted with 3:1 PE–Et2O, the minor isomer 8 was eluted with 1:3 PE–Et2O, and major isomer 7 was eluted with Et2O.
  • 10 tert-Butyl (2S,6R)-2-(Hydroxymethyl)-1-azabicyclo[4.1.0]hept-3-ene-6-carboxylate [(–)-7] Orange oil; yield: 130 mg (49%); [α]D 20 –54.4 (c 2.0, CHCl3). IR (Nujol): 3234, 1731, 1659 cm−1. 1H NMR (400 MHz, CDCl3): δ = 1.47 (s, 9 H, 3 × CH3), 1.93 (s, 1 H, H-1′), 2.01 (s, 1 H, H-1′), 2.58–2.65 (m, 1 H, H-5), 2.65–2.73 (m, 1 H, H-5), 3.60 (dd, = 10.8, 8.4 Hz, 1 H, H-2′), 3.67 (dd, = 11.2, 4.8 Hz, 1 H, H-2′), 3.78–3.80 (m, 1 H, H-2), 5.27–5.31 (dm, = 10.4 Hz, 1 H, H-4), 5.73–5.79 (m, 1 H, H-3). 13C NMR (100 MHz, CDCl3): δ = 22.6 (C-5), 27.7 (C-1′), 27.9 (3 × CH3), 38.5 (C-6), 56.7 (C-2), 65.0 (C-2′), 81.4 (Cq, t-Bu), 121.8 (C-4), 124.4 (C-3), 171.4 (C=O). HRMS (ESI): m/z [M + H]+ calcd for C12H20NO3: 226.1438; found: 226.1435. tert-Butyl (2R,6S)-2,6-Bis(hydroxymethyl)-1,2,3,6-tetrahydropyridine-2-carboxylate [(+)-8] Orange oil; yield: 63 mg (22%); [α]D 20 +51.4 (c 1.8, CHCl3). IR (neat): 3407, 1725, 1642 cm−1. 1H NMR (400 MHz, CDCl3): δ = 1.47 (s, 9 H, 3 × CH3), 2.13 (dm, = 16.8 Hz, 1 H, H-3), 2.50–2.70 (br s, 2 H, 2 × OH), 2.62 (dddd, = 16.8, 5.8, 2.5, 1.0 Hz, 1 H, H-3), 3.46 (d, = 9.8 Hz, 1 H, H-2′), 3.54 (dd, = 10.8, 4.4 Hz, 1 H, H-6′), 3.65 (dd, = 11.0, 3.8 Hz, 1 H, H-6′), 3.66 (d, = 10.0 Hz, 1 H, H-2′), 3.91–3.96 (m, 1 H, H-6), 5.57 (dm, = 10.0 Hz, 2 H, H-5), 5.79 (ddt, = 10.2, 5.8, 2.2 Hz, 1 H, H-4). 13C NMR (100 MHz, CDCl3): δ = 27.9 (3 × CH3), 32.4 (C-3), 40.6 (C-2′), 53.6 (C-6), 61.1 (C-2), 65.3 (C-6′), 82.3 (Cq, t-Bu), 124.1 (C-4), 126.8 (C-5), 171.6 (C=O). HRMS (ESI): m/z [M + H]+ calcd for C12H22NO4: 244.1549; found: 244.1520.
  • 11 Alves MJ, Gilchrist TL. J. Chem. Soc., Perkin Trans. 1 1998; 299
  • 12 Alves MJ, Costa FT In Heterocyclic Targets in Advanced Organic Synthesis . Carreiras MC, Marco-Contelles J. Research Signpost; India: 2011: 145
  • 13 Alves MJ, Gil Fortes A, Costa FT. Tetrahedron 2006; 62: 3095
  • 14 Bhanu Prasad BA, Sanghi R, Singh VK. Tetrahedron 2002; 58: 7355
    • 15a Alves MJ, Gilchrist TL, Sousa JH. J. Chem. Soc., Perkin Trans. 1 1999; 1305
    • 15b Solomon ME, Lynch CL, Rich DH. Tetrahedron Lett. 1995; 36: 4955
    • 15c Alves MJ, Azoia NG, Gil Fortes A. Heterocycles 2005; 65: 1329
  • 16 Alves MJ, Azoia NG, Bickley JF, Gil Fortes A, Gilchrist TL, Mendonça R. J. Chem. Soc. Perkin Trans. 1 2001; 2969
    • 17a Ward DE, Abaee MS. Org. Lett. 2000; 2: 3937
    • 17b Ward DE, Souweha MS. Org. Lett. 2005; 7: 3533
  • 18 Bols M, Hazell RG, Thomsen IB. Chem. Eur. J. 1997; 940
  • 19 Mendes, R.; Duarte, V. C. M.; Gil Fortes, A.; Alves, M. J. unpublished results.
  • 20 (2S,3S,4R,6S)-3,4-Dihydroxy-2-(hydroxymethyl)-1-azabicyclo[4.1.0]heptane-6-carboxylic Acid [(+)-12] Yellow oil; yield: 3 mg (43%); [α]D 20 +52.8 (c 0.6, MeOH). IR (neat): 3422, 1653 cm−1. 1H NMR (400 MHz, D2O): δ = 1.86 (s, 1 H, H-1′), 1.95 (s, 1 H, H-1′), 2.29 (dd, = 15.2, 3.6 Hz, 1 H, H-3), 2.63 (dd, = 15.2, 4.4 Hz, 1 H, H-3), 3.33–3.41 (m, 1 H, H-6), 3.50 (dd, = 9.0, 2.2 Hz, 1 H, H-4 or H-5), 3.81 (dd, = 12.0, 6.4 Hz, 1 H, H-6′), 3.88–3.93 (m, 2 H, H-6′ + H-4 or H-5). 13C NMR (100 MHz, D2O): δ = 30.7 (C-3), 33.8 (C-1′), 38.8 (C-2), 55.6 (C-6), 62.1 (C-6′), 65.8 (C-4 or C-5), 66.1 (C-4 or C-5), 179.9 (C=O). HRMS (ESI): m/z [M+] calcd for C8H13NO5: 203.0794; found: 203.0801.
  • 21 (2S,4R,5S,6S)-4,5-Dihydroxy-2,6-bis(hydroxymethyl)-piperidine-2-carboxylic Acid [(+)-13] Brown oil; yield: 3 mg (35%); [α]D 20 +44.4 (c 0.6, MeOH). IR (neat) 3435, 1646, 1212 cm−1. 1H NMR (400 MHz, D2O): δ = 2.19 (dd, = 15.2, 2.4 Hz, 1 H, H-3), 2.74 (dd, = 15.2, 4.0 Hz, 1 H, H-3), 3.64 (s, 2 H, H-2′), 3.88 (dd, = 11.0, 2.6 Hz, 1 H, H-5), 3.91 (dd, = 12.2, 6.2 Hz, 1 H, H-6′), 3.99–4.04 (m, 1 H, H-6), 4.10 (dd, = 12.4, 3.2 Hz, 1 H, H-6′), 4.18–4.22 (m, 1 H, H-4). 13C NMR (100 MHz, D2O): δ = 33.8 (C-3), 38.1 (C-2′), 51.8 (C-6), 55.4 (C-6′), 60.9 (C-2), 63.1 (C-4), 63.3 (C-5), 169.0 (C=O). HRMS (ESI): m/z [M+] calcd for C8H15NO6: 221.0899; found: 221.0902.