Synlett 2014; 25(15): 2201-2207
DOI: 10.1055/s-0034-1378517
letter
© Georg Thieme Verlag Stuttgart · New York

Magnetically Separable Nano Fe3O4 Catalyzed Direct Azidation of Allylic and Benzylic Alcohols Followed by Copper-Catalyzed Click Reaction

Naveen,
Nayyar Ahmad Aslam
Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India   Fax: +91(172)2240266   Email: sababu@iisermohali.ac.in
,
Srinivasarao Arulanda Babu*
Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India   Fax: +91(172)2240266   Email: sababu@iisermohali.ac.in
,
Dharmendra Kumar Singh
Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India   Fax: +91(172)2240266   Email: sababu@iisermohali.ac.in
,
Ameet Rana
Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India   Fax: +91(172)2240266   Email: sababu@iisermohali.ac.in
› Author Affiliations
Further Information

Publication History

Received: 06 May 2014

Accepted after revision: 20 June 2014

Publication Date:
04 August 2014 (online)


Abstract

A competent one-pot method comprising magnetically separable nano Fe3O4 catalyzed direct azidation of allylic and benzylic alcohols followed by the copper-catalyzed click reaction of the corresponding azides with alkynes is reported. This method gave a direct access to several 1,2,3-triazoles starting from various allylic and benzylic alcohols via their respective azides.

Supporting Information

 
  • References and Notes

  • 1 Sanz R, Martínez A, Miguel D, Álvarez-Gutiérrez JM, Rodríguez F. Adv. Synth. Catal. 2006; 348: 1841
  • 2 Emer E, Sinisi R, Capdevila MG, Petruzziello D, De Vincentiis F, Cozzi PG. Eur. J. Org. Chem. 2011; 647
  • 3 Bandini M. Angew. Chem. Int. Ed. 2011; 50: 994
  • 4 Kumar R, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 1121
  • 5 Shirakawa S, Shimizu S. Synlett 2008; 1539
  • 6 Trillo P, Baeza A, Nájera C. J. Org. Chem. 2012; 77: 7344 ; and references cited therein
  • 7 Srinu G, Srihari P. Tetrahedron Lett. 2013; 54: 2382
  • 8 Reddy PS, Ravi V, Sreedhar B. Tetrahedron Lett. 2010; 51: 4037 ; and references cited therein
  • 9 Hajipour AR, Rajaei A, Ruoho AE. Tetrahedron Lett. 2009; 50: 708
  • 10 Yadav JS, Bhunia DC, Krishna KV, Srihari P. Tetrahedron Lett. 2007; 48: 8306
  • 11 Kumar HM. S, Reddy BV. S, Anjaneyulu S, Yadav JS. Tetrahedron Lett. 1998; 39: 7385
    • 13a Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 13b Skoda EM, Davis GC, Wipf P. Org. Process Res. Dev. 2012; 16: 26
    • 13c Scriven EF. V, Turnbull K. Chem. Rev. 1988; 88: 297
    • 13d Azides and Nitrenes . Scriven EF. V. Academic; New York: 1984
    • 14a Babu SG, Karvembu R. Catal. Surv. Asia 2013; 17: 156
    • 14b Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J.-M. Chem. Rev. 2011; 111: 3036
    • 14c Shylesh S, Schünemann V, Thiel WR. Angew. Chem. Int. Ed. 2010; 49: 3428
    • 14d Parella R, ; Naveen; Kumar A, Babu SA. Tetrahedron Lett. 2013; 54: 1738
    • 14e Parella R, ; Naveen; Babu SA. Catal. Commun. 2012; 29: 118
    • 14f Kumar A, Parella R, Babu SA. Synlett 2014; 25: 835
    • 14g Gawande MB, Branco PS, Varma RS. Chem. Soc. Rev. 2013; 42: 3371
    • 15a Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596

    • For selected reviews, see:
    • 15b Bock VD, Hiemstra H, van Maarseveen JH. Eur. J. Org. Chem. 2006; 51
    • 15c Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696
    • 15d Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
    • 15e van Dijk M, Rijkers DT. S, Liskamp RM. J, van Nostrum CF, Hennink WE. Bioconjugate Chem. 2009; 20: 2001
    • 15f Hein CD, Liu X.-M, Wang D. Pharm. Res. 2008; 25: 2216
    • 15g Lutz J.-F. Angew. Chem. Int. Ed. 2008; 47: 2182
    • 15h Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA. Med. Res. Rev. 2008; 28: 278
    • 15i Dondoni A. Chem. Asian J. 2007; 2: 700
    • 15j Ganesh V, Sudhir S, Kundu T, Chandrasekaran S. Chem. Asian J. 2011; 6: 2670
    • 15k Moses JE, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249
    • 15l Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905
  • 16 General Procedure for the Magnetic Nano Fe3O4 Catalyzed Direct Azidation of Allylic Alcohol 1a A mixture of alcohol 1a (0.5 mmol), trimethylsilyl azide (1.25 mmol), and magnetic nano Fe3O4 (particle size <50 nm, 15 mol%; the particles can be handled using a Teflon spatula) in DCE (3 mL) was stirred at 70 °C for 6 h. At this stage a magnet was externally applied to the reaction flask to attract the magnetic Fe3O4 nanoparticles, and the resulting clear solution was transferred to another flask using a pipette. The catalyst was washed using EtOAc (2 mL), and the residual Fe3O4 nanoparticles were heated in an oven at 100–110 °C overnight, and the catalyst was reused in subsequent cycles. The combined organic layers were evaporated under vacuum and purified by column chromatography to give the product 2. General Procedure for the One-Pot Magnetic Nano Fe3O4 Catalyzed Direct Azidation of Allylic Alcohols and Click Reaction The direct azidation of 1a (0.5 mmol) was carried out as above, the catalyst was removed using an external magnet, and the solvent was evaporated. Then to the residue THF (3 mL), H2O (3 mL), alkyne (1 mmol), CuSO4·5H2O (30 mol%), and sodium l-ascorbate (30 mol%) were added, and the mixture was stirred at r.t. for 12 h. The reaction mixture was then extracted using EtOAc, the combined organic layers were evaporated, and the resulting reaction mixture was purified by column chromatography, eluting with EtOAc–hexanes (50:50), to afford the product 4a as a colorless liquid. Yield: 82% (238 mg). FT-IR (neat): ν = 3375, 2954, 1731, 1450, 1223, 1091 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.57 (s, 1 H), 7.41–7.28 (m, 10 H), 6.70 (dd, J 1 = 15.6 Hz, J 2 = 7.2 Hz, 1 H), 6.52–6.47 (m, 2 H), 4.79 (s, 2 H), 3.36 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 147.8, 137.7, 135.5, 134.7, 129.2, 128.8, 128.7, 128.6, 127.5, 126.9, 125.5, 121.2, 66.5, 56.4. ESI-HRMS: m/z calcd for C18H18N3O [M + H]+: 292.1450; found: 292.1100.

    • The nano Fe3O4 used in this work was purchased from Sigma-Aldrich, and the size of the particles was checked through HRTEM analysis/images (see the Supporting Information) before using the nano Fe3O4. For communications dealing with the preparation and characterization of nano Fe3O4, see:
    • 17a Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M. J. Biomed. Mater. Res., Part A 2007; 80: 333
    • 17b Yuanbi Z, Zumin Q, Jiaying H. Chin. J. Chem. Eng. 2008; 16: 451
    • 17c Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky AA. Mater. Lett. 2011; 65: 1882
    • 17d Yang T, Shen C, Li Z, Zhang H, Xiao C, Chen S, Xu Z, Shi D, Li J, Gao H. J. Phys. Chem. B 2005; 109: 23233