Synthesis 2014; 46(21): 2957-2964
DOI: 10.1055/s-0034-1378542
paper
© Georg Thieme Verlag Stuttgart · New York

McQuade’s Six-Membered NHC–Copper(I) Complexes for Catalytic Asymmetric­ Silyl Transfer

Lukas B. Delvos
Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany   Fax: +49(30)31428829   Email: martin.oestreich@tu-berlin.de
,
Alexander Hensel
Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany   Fax: +49(30)31428829   Email: martin.oestreich@tu-berlin.de
,
Martin Oestreich*
Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany   Fax: +49(30)31428829   Email: martin.oestreich@tu-berlin.de
› Author Affiliations
Further Information

Publication History

Received: 20 June 2014

Accepted: 29 June 2014

Publication Date:
30 July 2014 (online)


Abstract

A full account of our work on enantioselective silylation of typical prochiral acceptors employing chiral six-membered NHC–copper(I) complexes introduced by McQuade and co-workers is presented. With these precatalysts, asymmetric branched-selective substitution of allylic phosphates and 1,2-addition to imines had become possible for the first time. The successful application of these catalysts in two fundamentally different reactions raised the question whether these are a privileged ligand motif for catalytic asymmetric silyl transfer. To assess their generality, these were utilized in the related 1,2-addition to aldehydes and in conjugate addition to representative α,β-unsaturated acceptors, but with limited success in both cases. This study also includes an optimization of the allylic silylation, now overcoming the limited scope of the previous protocol. The scope of the imine addition is extended to heteroaryl­-substituted aldimines.

Supporting Information

 
  • References

  • 1 For a general review of Si–B bond activation, see: Oestreich M, Hartmann E, Mewald M. Chem. Rev. 2013; 113: 402
  • 2 For a brief review of Si–B bond activation through transmetalation, see: Hartmann E, Oestreich M. Chim. Oggi/Chem. Today 2011; 29: 34
  • 3 Suginome M, Matsuda T, Ito Y. Organometallics 2000; 19: 4647
    • 4a Walter C, Auer G, Oestreich M. Angew. Chem. Int. Ed. 2006; 45: 5675
    • 4b Walter C, Oestreich M. Angew. Chem. Int. Ed. 2008; 47: 3818
    • 4c Walter C, Fröhlich R, Oestreich M. Tetrahedron 2009; 65: 5513

    • For synthetic applications, see:
    • 4d Hartmann E, Oestreich M. Angew. Chem. Int. Ed. 2010; 49: 6195
    • 4e Hartmann E, Oestreich M. Org. Lett. 2012; 14: 2406
    • 5a Lee K.-s, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 2898

    • For the related 1,6-addition, see:
    • 5b Lee K.-s, Wu H, Haeffner F, Hoveyda AH. Organometallics 2012; 31: 7823
    • 5c Pace V, Rae JP, Procter DJ. Org. Lett. 2014; 16: 476

    • For a synthetic application, see:
    • 5d Harb HY, Collins KD, Garcia Altur JV, Bowker S, Campbell L, Procter DJ. Org. Lett. 2010; 12: 5446

    • For an application in kinetic resolution, see:
    • 5e Pace V, Rae JP, Harb HY, Procter DJ. Chem. Commun. 2013; 49: 5150
  • 6 For a review on asymmetric conjugate addition with silicon and boron nucleophiles, see: Hartmann E, Vyas DJ, Oestreich M. Chem. Commun. 2011; 47: 7917

    • For an application in racemic domino reactions, see:
    • 7a Welle A, Petrignet J, Tinant B, Wouters J, Riant O. Chem. Eur. J. 2010; 16: 10980

    • For stereoselective 1,4-silylation by combination of transition metal and chiral amine catalysis, see:
    • 7b Ibrahem I, Santoro S, Himo F, Córdova A. Adv. Synth. Catal. 2011; 353: 245

      Racemic:
    • 8a Vyas DJ, Oestreich M. Angew. Chem. Int. Ed. 2010; 49: 8513

    • Diastereoselective:
    • 8b Hazra CK, Irran E, Oestreich M. Eur. J. Org. Chem. 2013; 4903
  • 9 For regioselective propargylic substitution, see: Vyas DJ, Hazra CK, Oestreich M. Org. Lett. 2011; 13: 4462
  • 10 Vyas DJ, Fröhlich R, Oestreich M. Org. Lett. 2011; 13: 2094
  • 11 Kleeberg C, Feldmann E, Hartmann E, Vyas DJ, Oestreich M. Chem. Eur. J. 2011; 17: 13538
  • 12 Cirriez V, Rasson C, Hermant T, Petrignet J, Díaz Álvarez J, Robeyns K, Riant O. Angew. Chem. Int. Ed. 2013; 52: 1785
    • 13a Park J, McQuade D. Synthesis 2012; 44: 1485

    • For activation of B–B bond for asymmetric 1,4-addition, see:
    • 13b Park JK, Lackey HH, Rexford MD, Kovnir K, Shatruk M, McQuade DT. Org. Lett. 2010; 12: 5008
    • 14a Park JK, Lackey HH, Ondrusek BA, McQuade DT. J. Am. Chem. Soc. 2011; 133: 2410

    • For a synthetic application, see:
    • 14b Park JK, McQuade DT. Angew. Chem. Int. Ed. 2012; 51: 2717
    • 15a Delvos LB, Vyas DJ, Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 4650
    • 15b Takeda M, Shintani R, Hayashi T. J. Org. Chem. 2013; 78: 5007

    • For a comparison with syntheses of α-chiral silanes by asymmetric copper(I)-catalyzed addition of carbon nucleophiles to silylated allylic acceptors, see:
    • 15c Delvos LB, Oestreich M. Chim. Oggi/Chem. Today 2013; 31: 74
    • 16a Hensel A, Nagura K, Delvos LB, Oestreich M. Angew. Chem. Int. Ed. 2014; 53: 4964
    • 16b Mita T, Sugawara M, Saito K, Sato Y. Org. Lett. 2014; 16: 3028
  • 17 We believe that there is confusion in the literature over the sign of optical rotation for (R)-4b and, hence, its absolute configuration. The Riant group assigned R configuration to a negative optical rotation on the basis of the work of Ohkuma and co-workers; see ref. 26. The authors had assigned the absolute configuration by Mosher’s method. However, (R)-4b is characterized by a positive optical rotation in Ohkuma’s work.
  • 18 Kulshrestha A, Marzijarani NS, Ashtekar KD, Staples R, Borhan B. Org. Lett. 2012; 14: 3592
  • 19 Martín R, Islas G, Moyano A, Pericàs MA, Riera A. Tetrahedron 2001; 57: 6367
  • 20 Vyas DJ, Oestreich M. Chem. Commun. 2010; 46: 568
  • 21 Love BE, Raje PS, Williams II TC. Synlett 1994; 493
  • 22 Chemla F, Hebbe V, Normant JF. Synthesis 2000; 75
  • 23 Walter C. Dissertation . Westfälische Wilhelms-Universität; Germany: 2008
  • 24 Racemic samples of 8ac were obtained by treating the corresponding substrates 7ac with CuCN (5.0 mol%), NaOMe (1.5 equiv), and Me2PhSiBpin (1.5 equiv) in THF at –78 °C.
  • 25 Kacprzynski MA, May TL, Kazane SA, Hoveyda AH. Angew. Chem. Int. Ed. 2007; 46: 4554
  • 26 Arai N, Suzuki K, Sugizaki S, Sorimachi H, Ohkuma T. Angew. Chem. Int. Ed. 2008; 47: 1770
  • 27 Shintani R, Okamoto K, Hayashi T. Org. Lett. 2005; 7: 4757
  • 28 O’Brien JM, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 7712
  • 29 Matsumoto Y, Hayashi T, Ito Y. Tetrahedron 1994; 50: 334