Synlett 2014; 25(16): 2311-2315
DOI: 10.1055/s-0034-1378633
cluster
© Georg Thieme Verlag Stuttgart · New York

Rhodium-Catalyzed Carbonylative Skeleton Rearrangement of 1,4-Enynes Tethered by a Cyclopropane Group

Gen-Qiang Chen
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. of China   Fax: +86(21)64166128   Email: mshi@mail.sioc.ac.cn
,
Xiang-Ying Tang*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. of China   Fax: +86(21)64166128   Email: mshi@mail.sioc.ac.cn
,
Min Shi*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. of China   Fax: +86(21)64166128   Email: mshi@mail.sioc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 22 July 2014

Accepted after revision: 24 July 2014

Publication Date:
21 August 2014 (online)


Abstract

The carbonylative skeleton rearrangement of 1,4 enynes tethered by a cyclopropane group proceeded smoothly in the presence of [Rh(CO)2Cl]2 under CO atmosphere to give the corresponding 1,2,4,5,6,7-hexahydrocyclopenta[a]inden-3(3bH)-one derivatives in moderate yields.

Supporting Information

 
  • References and Notes

    • 1a Beller M. Catalytic Carbonylation Reactions. In Topics in Organometallic Chemistry. Vol. 18. Springer; Berlin: 2006
    • 1b Hegedus LS. Transition Metals in the Synthesis of Complex Organic Molecules. University Science Books; Mill Valley: 1994
    • 1c Kollar L. Modern Carbonylation Methods. Wiley-VCH; Weinheim: 2008
    • 1d Kiss G. Chem. Rev. 2001; 101: 3435
  • 2 Mahadevan V, Getzler YD. Y. L, Coates GW. Angew. Chem. Int. Ed. 2001; 41: 2781
    • 3a Lee JT, Thomas PJ, Alper H. J. Org. Chem. 2001; 66: 5424
    • 3b Schmidt JA. R, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2005; 127: 11426
  • 4 Jia L, Xu H. Org. Lett. 2003; 5: 1575
  • 5 Kurahashi T, de Meijere A. Angew. Chem. Int. Ed. 2005; 44: 7881
    • 6a Jiang G.-J, Fu X.-F, Li Q, Yu Z.-X. Org. Lett. 2012; 14: 692
    • 6b Yao Z.-K, Li J, Yu Z.-X. Org. Lett. 2011; 13: 134
    • 6c Wender PA, Gamber GG, Hubbard RD, Pham SM, Zhang L. J. Am. Chem. Soc. 2005; 127: 2836
    • 6d Wender PA, Gamber GG, Hubbard RD, Zhang L. J. Am. Chem. Soc. 2002; 123: 2876
  • 7 Matsuda T, Tsuboi T, Murakami M. J. Am. Chem. Soc. 2007; 129: 12596
    • 8a Jones RV. H, Lindsell WE, Palmer DD, Prestonb PN, Whitton AJ. Tetrahedron Lett. 2005; 46: 8695
    • 8b Lindsell WE, Palmer DD, Preston PN, Rosair GM. Organometallics 2005; 24: 1119
  • 9 Morimoto T, Fujioka M, Fuji K, Tsutsumi K, Kakiuchi K. Pure Appl. Chem. 2008; 80: 1079
    • 10a Fukuyama T, Nakashima N, Okada T, Ryu I. J. Am. Chem. Soc. 2013; 135: 1006
    • 10b Lin M, Li F, Jiao L, Yu Z.-X. J. Am. Chem. Soc. 2011; 133: 1690
    • 10c Kondo T, Nomura M, Ura Y, Wada K, Mitsudo T. J. Am. Chem. Soc. 2006; 128: 14816
    • 10d Wender PA, Croatt MP, Deschamps NM. J. Am. Chem. Soc. 2004; 126: 5948
    • 10e Jiao L, Yuan C, Yu Z.-X. J. Am. Chem. Soc. 2008; 130: 4421
    • 10f Wender PA, Croatt MP, Deschamps NM. J. Am. Chem. Soc. 2004; 126: 5948
    • 10g Khand IU, Knox GR, Pauson PL, Watts WE. J. Chem. Soc., Perkin Trans. 1 1973; 1: 977
    • 11a Kim SY, Lee SI, Choi SY, Chung YK. Angew. Chem. Int. Ed. 2008; 47: 4914
    • 11b Kim SY, Chung YK. J. Org. Chem. 2010; 75: 1281
  • 12 Bennacer B, Fujiwara M, Lee S.-Y, Ojima I. J. Am. Chem. Soc. 2005; 127: 17756
    • 13a Wender PA, Gamber GG, Hubbard RD, Zhang L. J. Am. Chem. Soc. 2002; 124: 2876
    • 13b Wang Y, Wang J, Su J, Huang F, Jiao L, Liang Y, Yang D, Zhang S, Wender PA, Yu Z.-X. J. Am. Chem. Soc. 2007; 129: 10060

      For transition-metal-catalyzed cyclizations of 1,4-enynes, see:
    • 14a Shi X, Gorin DJ, Toste FD. J. Am. Chem. Soc. 2005; 127: 5802
    • 14b Buzas A, Gagosz F. J. Am. Chem. Soc. 2006; 128: 12614
    • 14c Marion N, Diez-Gonzalez S, De Fremont P, Noble AR, Nolan SP. Angew. Chem. Int. Ed. 2006; 45: 3647
    • 14d Shu X, Schienebeck CM, Song W, Guzei IA, Tang W. Angew. Chem. Int. Ed. 2013; 52: 13601
    • 14e Schienebeck CM, Robichaux PJ, Li X, Chen L, Tang W. Chem. Commun. 2013; 49: 2616
    • 14f Xu X, Liu P, Shu X, Tang W, Houk KN. J. Am. Chem. Soc. 2013; 135: 9271
    • 14g Shu X, Li X, Shu D, Huang S, Schienebeck CM, Zhou X, Robichaux PJ, Tang W. J. Am. Chem. Soc. 2012; 134: 5211
    • 14h Shu X, Huang S, Shu D, Guzei IA, Tang W. Angew. Chem. Int. Ed. 2011; 50: 8153

      For carbonylative cycloisomerisation of 1,4-enynes, see:
    • 15a Fukuyama T, Ohta Y, Brancour C, Miyagawa K, Ryu I, Dhimane A.-L, Fensterbank L, Malacria M. Chem. Eur. J. 2012; 18: 7243
    • 15b Li X, Song W, Tang W. J. Am. Chem. Soc. 2013; 135: 16797
    • 15c Li X, Huang S, Schienebeck CM, Shu D, Tang W. Org. Lett. 2012; 14: 1584
  • 16 Chen G.-Q, Shi M. Chem. Commun. 2013; 49: 698
  • 17 Vasu D, Das A, Liu R.-S. Chem. Commun. 2010; 46: 4115
    • 18a Shambayati S, Crowe WE, Schreiber SL. Tetrahedron Lett. 1990; 31: 5289
    • 18b Jeong N, Chung YK, Lee BY, Lee SH, Yoo S.-E. Synlett 1991; 204

      It has been reported that electron-deficient CO or phosphine ligands were critical to increase the π-acidity of the rhodium center, see:
    • 19a Huang S, Li X, Lin CL, Guzeic IA, Tang W. Chem. Commun. 2012; 48: 2204
    • 19b Shu X.-Z, Shu D, Schienebeck CM, Tang W. Chem. Soc. Rev. 2012; 41: 7698

    • Phosphine ligands have great influence on rhodium-catalyzed carbonylation and decarbonylation and a π-acidic phosphine ligand can promote decarbonylation in some cases, see:
    • 19c Chen P.-H, Xu T, Dong G. Angew. Chem. Int. Ed. 2014; 53: 1674
    • 19d Xu T, Savage NA, Dong G. Angew. Chem. Int. Ed. 2014; 53: 1891 ; however, concerning about that phosphine ligands have no effect in our current reaction, the reason is still not clear at the present stage
  • 20 The crystal data of 2a have been deposited in CCDC with number 906119.
  • 21 There is still another mechanism that can explain the formation of product 2a. However, this mechanism involves the formation of a very strained intermediate, which makes this mechanism seems less possible (Scheme 3).

    • For a similar migration at cyclopentadiene ring, see:
    • 22a Replogle KS, Carpenter BK. J. Am. Chem. Soc. 1984; 106: 5751
    • 22b Li Z, Vasella A. Helv. Chim. Acta 1996; 79: 2201
    • 22c Ye B, Cramer N. J. Am. Chem. Soc. 2013; 135: 636